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A B S T R A C T   

Many subsurface porous media such as soils, carbonate rocks, and mudstones possess multiscale porous struc
tures that play an important role in regulating fluid flow and transport therein. A pore-network-continuum 
hybrid model is promising for numerical studies of a multiscale digital rock. It is, however, still prohibitive to 
the REV-size modeling because tens of millions of microporosity voxels may exist. In this work, we develop a 
novel and robust algorithm for coarsening microporosity voxels of a multiscale digital rock. Then, we combine 
coarsened microporosity grids with the pore network of resolved macropores to form efficient computational 
meshes. Furthermore, a pore-network-continuum simulator is developed to simulate flow and transport in both a 
synthesized multiscale digital rock and a realistic Estaillades carbonate rock. We show that the coarsening al
gorithm can reduce computational grids by about 90%, which substantially reduces computational costs. 
Meanwhile, coarsening microporosity has a minor impact on the predictions of absolute permeability, gas 
production curves, and breakthrough curves of solute transport. We illustrate the mechanisms of flow and 
transport in multiscale porous media induced by microporosity. Finally, the efficient hybrid model is used to 
predict the absolute permeability of an Estaillades digital rock. The numerical prediction matches well with the 
reported experimental data. We highlight the importance of characterizing mean pore-size distributions in 
microporosity for the prediction of rock permeability and local flow fields. The developed pore-network- 
continuum hybrid model aided by grid coarsening of microporosity serves as a useful numerical tool to study 
flow and transport in multiscale porous media.   

1. Introduction 

With the rapid development of non-invasive imaging techniques and 
computation performance, Digital Rock Physics (DRP) has been playing 
an important role in understanding the fundamental physics of flow and 
transport in porous media (Blunt et al., 2013; Wildenschild & Sheppard, 
2013; Qin et al., 2021a, 2022). The most relevant applications include 
geological sequestration of carbon dioxide (Andrew et al., 2014), un
derground hydrogen storage (Jangda et al., 2022), contaminant trans
port in groundwater (Gharedaghloo et al., 2018), and unconventional 
oil/gas recovery (Guo et al., 2018). Nowadays, from high-resolution 
images, one can routinely construct realistic porous structures, and 
conduct pore-scale numerical simulations of material properties such as 
absolute permeability (Khan et al., 2011; Yang et al., 2019), effective 
diffusivity (Xu, 2022), capillary pressure (Raeini et al., 2014; Chen et al., 

2020) and relative permeability (Dong & Blunt, 2009; Zhao et al., 2020). 
Proper image segmentation of pore spaces is the prerequisite for 

modeling flow and transport. For rocks with unimodal pore-size distri
butions, segmentation can be well accomplished, sometimes calibrated 
by measured porosity. However, many natural rocks present complex 
and multiscale pore structures, such as soils, carbonate rocks, tight 
sandstones, and mudstones (Bijeljic et al., 2013; Li et al., 2021; Qin 
et al., 2021b; Fan et al., 2022; Dai et al., 2023). Extensive Mercury 
Intrusion Porosimetry (MIP) and Nuclear Magnetic Resonance (NMR) 
tests have shown bimodal or even multi-modal pore-size distributions of 
these core samples (Tanino & Blunt, 2012; Nie et al., 2021). Moreover, 
pore diameters at peak can be different from each other by several or
ders of magnitude (Lin Ma et al., 2021). Due to the trade-off between 
image resolution and field of view, it remains prohibitive to obtain a 
REV-size image with all details of multiscale pore structures. Therefore, 
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in the construction of multiscale digital rocks, the concept of Sub- 
Resolution Porosity (SRP) (or microporosity), which composes of 
many micropores that cannot be identified at the current imaging res
olution, has been proposed (Soulaine et al., 2016; Guo et al., 2018). In 
practice, microporosity may be segmented according to the gray values 
of a dry sample image (Bultreys et al., 2015), or more accurately, based 
on the image difference between dry and fully-saturated sample scan
ning (Wang et al., 2022). 

When modeling flow and transport in a multiscale digital rock, 
microporosity may be treated as solid or void spaces by inaccurate 
segmentation. This can alter the connectivity of pore spaces, and may 
lead to significant errors in the prediction of flow fields and material 
properties (Jacob et al., 2021). To address the influences of micropo
rosity on flow and transport, a few hybrid models have been developed 
in the past few years (Bauer et al., 2012; Soulaine & Tchelepi, 2016; Guo 
et al., 2018; 2019; Weishaupt & Helmig, 2021; Wu et al., 2022). In 
general, these models can be classified into two categories: Dual-Pore- 
Network Models (DPNMs) and micro-continuum models. In a DPNM, 
microporosity was represented by a fine-scale pore network (Jiang et al., 
2013; Mehmani & Prodanović, 2014; Yang et al., 2015; de Vries et al., 
2017). However, limited by computation, fine-scale pore networks were 
numerically generated with a small number of pore elements (Mehmani 
& Prodanović, 2014). Alternatively, microporosity was represented by 
the so-called micro-links (Bultreys et al., 2015; Ruspini et al., 2021). In 
principle, a micro-link was a conceptual porous throat, whose connec
tion with macropores and hydraulic conductivity could be inferred from 
images. Although this approach considers realistic microporosity dis
tributions, and requires less computation than a traditional DPNM, its 
accuracy depends on operator-supplied parameters (e.g., micro-link cut- 
off length). Most recently, Rabbani et al. (Rabbani et al., 2020) pre
sented a triple pore-network model for gas flow in fractured multiscale 
digital rocks, in which microporosity was discretized by its watersheds. 
This leads to a network of microporosity elements, which resemble the 
pore elements of fractures and macropores. To the best of our knowl
edge, current DPNMs undermine microporosity heterogeneity (e.g., 
porosity, permeability), which may play an important role in regulating 
flow and transport. 

On the other hand, in a micro-continuum model, flows in micropo
rosity and resolved macropores are respectively described by Darcy’s 
law and Stokes equation. Moreover, the coupling of the two-scale flows 
is implemented by the well-known Darcy-Brinkman-Stokes equation 
(Soulaine & Tchelepi, 2016; Guo et al., 2019). Obviously, numerical 
predictions by micro-continuum models have high fidelity, which can be 
used to calibrate and verify other numerical models such as DPNMs. 
However, it is worth noting that micro-continuum models are compu
tationally expensive, and prohibitive to the modeling of a REV-size 
multiscale digital rock, particularly for the two-phase flow modeling. 
For instance, for a 2003 digital rock, it took about 120 h to simulate a 
two-phase flow process by parallel computation of ten 28-core Broad
well Xeon nodes (Carrillo et al., 2022). 

To take advantage of both DPNMs and micro-continuum models, 
recently, the framework of a pore-network-continuum hybrid model has 
been proposed and implemented (Zhang et al., 2019; 2023). In this 
framework, flow and transport in macropores are described by a 
computationally efficient pore-network model, while a Darcy-scale 
model is used for microporosity. When microporosity voxels are used 
as computational grids as usual, computational efforts pertaining to the 
modeling of microporosity will be prohibitive. This is because tens of 
millions of voxels of microporosity may present in a standard multiscale 
digital rock (i.e., 10003 voxels). As we know, microporosity may not 
necessitate high-resolution computational grids, given the fact that 
gradients of flow and transport in microporosity are much smaller than 
those in macropores. Therefore, further development of coarsening of 
the microporosity voxels is promising, and crucial to the application of a 
pore-network-continuum model. 

There have been many studies on voxel-based mesh coarsening, of 

which uniformly reducing the image resolution (Maire, 2003) would be 
the simplest. However, this gives rise to the loss of geometrical details, 
and thus impacts the accuracy of numerical results (Shah et al., 2016). 
To solve the issue, coarsening methods based on the quadtree/octree 
algorithm were used (Legrain et al., 2011; Lei Ma et al., 2023), which 
can be categorized into coarse-to-fine and fine-to-coarse. The former 
first extracts smoothed geometrical interfaces of an image. Then, the 
interfaces are projected onto pre-defined background grids, which are 
usually quite coarse. The grids intersected with the interfaces are 
continuously subdivided by the octree algorithm. Finally, a local 
refinement may be conducted before the tessellation procedure, in order 
to maintain high resolution of the geometrical interfaces (Verhoosel 
et al., 2015). This algorithm has been used in many CFD software (e.g., 
snappyHexMesh in OpenFoam, Adaptive Mesh Refinement in Fluent and 
Comsol). However, it aims to approach a smooth boundary or interface 
which may be not necessary to the one represented by voxels. Also, it is 
worth noting that voxel-representation of boundaries or interfaces is the 
most accurate for a given CT scanning image. The latter starts with 
image voxels, and then merges eight grids (or four in 2D), which belong 
to the same material and have one common node, into one coarsening 
grid. Multi-level coarsening and smoothening between different levels of 
coarsening grids can be conducted (Fischer & Eidel, 2020). Although 
quadtree/octree-based coarsening methods have been widely used in 
image-based numerical studies (Legrain et al., 2011; Olshanskii et al., 
2013; Gackiewicz et al., 2021; Duan et al., 2022; Gote et al., 2022), their 
application in the problem of flow and transport in a multiscale digital 
rock has not been reported yet. Regarding the modeling of flow and 
transport, we need to properly treat the interfaces between macropores 
and microporosity, and allocate coarsest grids in microporosity regions 
of low flow gradients, which will be addressed in this work. Moreover, 
these coarsening methods are usually time-consuming (Frisken & Perry, 
2002). 

In this work, we develop a novel coarsening algorithm for micro
porosity voxels, which uses multiple consecutive convolution operations 
on voxels. The algorithm has the advantages of robustness, high effi
ciency, and flexible controls on coarsening processes. Together with our 
in-house pore-network-continuum modeling simulator, a number of case 
studies including the modeling of absolute permeability, compressible 
gas production, and solute transport in both a synthesized multiscale 
digital rock and an Estaillades carbonate rock have been conducted. We 
analyze the performance of coarsening microporosity in terms of nu
merical accuracy and computational efficiency, and investigate the ef
fects of microporosity on flow and transport in multiscale porous media. 

The remainder of the paper is organized as follows. In Section 2, we 
present the coarsening algorithm for microporosity voxels in detail, and 
the generation of computational meshes for our pore-network- 
continuum modeling simulator. In Section 3, we describe the involved 
physical models and their numerical implementation. In Section 4, we 
first show numerical results of flow and transport in an artificial mul
tiscale sample, based on four different types of coarsened grids of 
microporosity. We then propose an optimal coarsening for micropo
rosity, in order to balance computational efficiency and numerical ac
curacy. Moreover, we predict the absolute permeability of Estaillades 
limestone, and compare it with experimental data. Finally, we close with 
the main conclusions in section 5. 

2. Generation of computational meshes 

The computational mesh of a multiscale digital rock consists of the 
pore network of macropores and the grids of microporosity. To reduce 
computational efforts, we have developed a novel algorithm for gener
ating coarsened computational grids from initial microporosity voxels. 
In what follows, the pore-network extraction of macropores is presented 
in Section 2.1; the coarsening of computational grids for microporosity 
is discussed in Section 2.2; and the fusion of pore network and micro
porosity grids is given in Section 2.3. Moreover, we use a 2D ternary 
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image of 402 as an example, to help readers understand the generation of 
computational meshes. As shown in Fig. 1A, the white, the grey, and the 
black denote void spaces, solid phase, and microporosity, respectively. 

2.1. Pore network of macropores 

A number of image-based pore-network extraction methods have 
been reported in the literature (Lindquist et al., 1996; Silin et al., 2003; 
Dong & Blunt, 2009; Rabbani et al., 2014; Gostick, 2017). In this work, 
we use the open-source code, PoreSpy, which is built on the watershed 
segmentation of pore spaces. The key steps involved in the extraction of 
a pore network are prefiltering the distance map, eliminating saddle and 
plateau peaks, merging nearby peaks, and segmenting pore spaces into 
individual pore bodies by using a marker-based watershed (Gostick, 
2017). 

By PoreSpy, we can obtain the volume, inscribed radius, and surface 
area of each pore body, the cross-sectional area, inscribed radius, and 
perimeter of each pore throat, and the connectivity map of pore bodies. 
We assign all pore volumes to pore bodies, and pore throats are assumed 
to be volumeless. Fig. 1 shows a 2D schematic of the pore-network 
extraction. Presume that a segmented ternary image is ready for use. 
We further process the image to a binarized image in which micropo
rosity is treated as solid phase. Then, the binary image is provided to 
PoreSpy for the pore-network extraction, while some key parameters 
(such as Gaussian filter parameter sigma and structuring element size) 
need to be paid attention to (Gostick, 2017). Finally, the extracted pore 
network is shown in Fig. 1C. 

2.2. Computational grids of microporosity 

Instead of directly using microporosity voxels as computational 
grids, we heavily coarsen microporosity voxels. Here, we first introduce 
the basic coarsening algorithm. Then, we present three enhanced sub
modules for potential improvement of mesh quality. 

2.2.1. Basic coarsening algorithm 
The algorithm proceeds in three main steps: (1) preparing the input 

image and assigning weight values to its voxels; (2) conducting multiple 
consecutive convolution operations; and (3) generating and numbering 
the final computational grids of microporosity. 

The flowchart of the basic coarsening algorithm is given in Fig. 2. For 
a given raw image, we first identify the microporosity by thresholding. 
We assign weight values of 1 and 0 to the microporosity voxels and the 
remainder, respectively. Second, we preset the number of convolution 

operations, N, and their kernels, 
(

ki
x, ki

y, ki
z

)
, where i is the level index of 

convolution operation. Usually, we set a cubic kernel with the size of 23; 

and the stride is set to the same as the kernel size. After each level of 
convolution operation, we obtain a new feature map which is axially 
half the size of the previous feature map. If the weight value in a cell is 
equal to 8i (or 4i for 2D) in the ith level feature map, its projecting 
microporosity voxels can be coarsened to an ith level computational grid. 
Before we go into the (i + 1)th convolution operation, the weight values 
smaller than 8i are reset to 0 in the feature map. It is worth noting that 
the preset number of convolution operations, N, may not be achieved. 
The maximum level of convolution operations, however, can be easily 
determined by weight values in feature maps. 

Once all convolution operations are completed, we start with the 
final level of feature map and loop all the cells along x, y, and z di
rections in turn, to coarsen and number the microporosity voxels. From 
the final level of feature map to the input binary image, we sequentially 
number all the computational grids of microporosity as well as their 
projecting voxels. 

Obviously, each computational grid is linked with its projecting 
voxels. In such a way, for heterogenous microporosity, we may estimate 
material properties of a coarsening grid by averaging its projecting voxel 
values. We notice that if the size of an input image is not an integral 
multiple of the kernel size, ghost non-microporosity voxels for convo
lution operations can be added from the boundaries. Meanwhile, ver
satile coarsening can be conducted by properly designing the kernel size. 

To gain an intuitive understanding of the algorithm and its appli
cation, the 2D ternary image in Fig. 1A is used as the input image. As 
shown in Fig. 3A, we assign the weight value of 1 to the microporosity. 
Fig. 3B-3D shows the feature maps of the three consecutive convolution 
operations along with weight values in the cells. Fig. 3E shows the final 
computation grids of the microporosity, which consist of 3 third-level 
coarsening grids (8 × 8 voxels) in red, 7 s-level coarsening grids (4 ×
4 voxels) in yellow, 28 first-level coarsening grids (2 × 2 voxels) in 
green, and 57 uncoarsened voxel grids, in a total of 95 grids comparing 
to 473 original microporosity voxels. Notice that we first number pore 
bodies of the pore network, then computational grids of the 
microporosity. 

2.2.2. Submodules for coarsening controls 
One may be aware of that some issues are not addressed yet in the 

basic coarsening algorithm, such as steep transition between grids and 
lack of distribution optimization of grids. Therefore, we further develop 
three most important submodules, namely, transition-layer module, 
outward-coarsening module, and interface-coarsening module. 
Together with the basic coarsening algorithm, they can help us improve 
the mesh quality, and further reduce the number of computational grids 
of microporosity. 

The transition-layer module aims to keep smooth transition between 

Fig. 1. Schematic of the pore-network extraction. (A) A 2D ternary image of 402 pixels. (B) The binarized image as the input to PoreSpy for the pore-network 
extraction. (C) The extracted pore network with the pore bodies numbered from 1 to 7, while their corresponding watersheds of pixels are also numbered from 1 
to 7. In C, the pore bodies are represented by their inscribed circles in 2D. 
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different levels of coarsened grids. At the beginning of each convolution 
operation in the basic coarsening algorithm, we conduct erosion oper
ation (from scikit-image in Python) on the filtered feature map (refer to 
Fig. 2), to find the outmost layer of the cells which satisfy the coarsening 
criterion. Notice that in the filtered feature map, the cells with non-zero 
values satisfy the coarsening criterion. Then, we reset the weight values 
in the cells belonging to the outmost layer to 0. In other words, we 

prevent these cells in the feature map from participating in the next level 
of coarsening. Fig. 4A shows the computational grids of the micropo
rosity under the transition-layer module. Compared to the grids in 
Fig. 3E, the stiffness of transition regions has been dramatically reduced, 
which is beneficial to the modeling of flow and transport in micropo
rosity. We also observe that the third-level coarsening of this example is 
not achieved under the transition-layer module, because a number of 

Fig. 2. Flowchart of the basic coarsening algorithm for microporosity voxels.  

Fig. 3. Schematic of the basic coarsening algorithm. (A) The binary image in which the white denotes the microporosity, and the grey denotes macropores and solid. 
(B) The feature map with their cell values after the first convolution operation. (C) The feature map with their cell values after the second convolution operation. (D) 
The feature map with their cell values after the third convolution operation. (E) The computational grids of the microporosity where the red, the yellow, and the 
green respectively denote the third-level coarsening grids with the size of 43 pixels, the second-level coarsening grids with the size of 42 pixels, and the first-level 
coarsening grids with the size of 41 pixels. The white denotes the uncoarsened grids (i.e., the same as the original microporosity voxels). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 
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grids have been used as the transition layers. 
The outward-coarsening module aims, in the last level of coarsening, 

to coarsen microporosity voxels by starting from the center of each 
microporosity region. As a result, the largest computational grids will 
always locate around the center of microporosity where flow gradients 
are usually lowest. To this aim, in the last convolution operation in the 
basic coarsening algorithm, we keep the kernel size but change the stride 
to 1. The resultant feature map will be the same size as the previous level 
feature map. Then, the Euclidean distance map of the feature map is 
calculated, while the cells with a weight value of 0 are set to solid. 

Once the Euclidean distance map is available, we can start the 
coarsening and numbering with the cell of the largest distance in each 
microporosity region, and repeat searching neighboring cells till no 
more voxels can be coarsened. Finally, the computational grids of the 
microporosity under the combination of transition-layer module and 
outward-coarsening module are shown in Fig. 4B. It can be seen that the 
second-level coarsening grids will locate in the center of each micro
porosity region, and the numbering of the computational grids is 
outward. 

As shown in Fig. 4A and 4B, the majority of the computational grids, 
as the microporosity voxels, locate in the vicinity of void-microporosity 
and solid-microporosity interfaces. To reduce the number of these grids, 

we develop the interface-coarsening module. In addition to the kernel 
used in the basic coarsening algorithm, we design three more kernels 
with the sizes of 2 × 2 × 1, 2 × 1 × 2, and 1 × 2 × 2 along the x, y, and z 
directions, respectively. Meanwhile, the corresponding strips are the 
same size as the kernels. After the basic coarsening algorithm is finished, 
for the input binary image, we reset the weight values of the interface 
voxels to 1 and the remainder to 0. Through three independent convo
lution operations with the above three kernels, like in the basic algo
rithm, we can coarsen and number the interface voxels. Fig. 4C shows 
the computational grids of the microporosity under the combination of 
transition-layer module, outward-coarsening module, and interface- 
coarsening module. Notice that in 2D the used kernels are 2 × 1 and 
1 × 2 along the x and y direction, respectively. It is seen that most of the 
interface voxels are coarsened into the grids with the size of 2 × 1 voxels, 
because the convolution operation with the kernel of 2 × 1 is first 
conducted. 

2.3. Fusion of the pore network and microporosity grids 

To get the computation mesh for a hybrid model solver, the final step 
is to fuse the pore network of macropores and the computational grids of 
microporosity. As described in Section 2.1 and 2.2, a rigorous 

Fig. 4. Computational grids of the microporosity under different combinations of the three submodules. (A) Transition-layer module. (B) The combination of 
transition-layer module and outward-coarsening module. (C) The combination of transition-layer module, outward-coarsening module, and interface- 
coarsening module. 

Fig. 5. Schematic of the fusion of the pore network of macropores and the computational grids of microporosity. (A) Watersheds voxels, microporosity grids, and 
their connections. (B) The final computational mesh which composes the pore network and the microporosity grids. 
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numbering system for both pore network and microporosity grids has 
been employed. As shown in Fig. 5, the pore bodies and their associated 
watershed voxels are numbered in the same way. On the other hand, in 
the basic coarsening algorithm and the three submodules, each 
computational grid of microporosity and its associated microporosity 
voxels are always linked, and numbered in the same way. Moreover, we 
first number pore bodies of the pore network, then the computational 
grids of microporosity. So, once the pore-network extraction and the 
coarsening of microporosity voxels are done, we can loop through all the 
numbered voxels, and obtain the connectivity map between pore bodies 
and microporosity grids. 

We end up with a brief introduction to the data structure used in 
computational meshes. Basically, the data of a computational mesh are 
stored in two files. One file is used to store the information on pore 
bodies and microporosity grids, which includes centroid, volume, 
inscribed radius, and surface area of each pore body, and centroid, 
porosity, dimensions of each microporosity grid. The other file is used to 
store the information on pore throats and faces of microporosity grids, 
which includes the numbers of the two connected pore bodies, inscribed 
radius, area, perimeter, and length of each pore throat, and the numbers 
of the two connected grids (or a pair of pore body and grid), centroid, 
dimensions, unit normal of each grid face. 

For pore throats, we store inscribed radius, area, and perimeter. For 
microporosity grids, we store the center location, length–width-height, 
and volume. In the connectivity map, we store the face center, normal, 
face dimensions, and area. This information is needed in the physical 
models. 

3. Physical models and their numerical implementation 

To thoroughly investigate the impact of grid coarsening in micro
porosity on the numerical modeling of flow and transport, in this work, 
we implement three physical models (Zhang et al., 2019), namely, 
incompressible single-phase flow, transient compressible single-phase 
flow, and transient solute transport. Moreover, we consider isothermal 
cases. 

3.1. Incompressible single-phase flow 

We consider an incompressible single-phase flow in multiscale dig
ital rocks. In the framework of a pore-network-continuum hybrid model, 
the flow in macropores is discretized by a pore-network model as: 
∑Ni

j=1
Tij
(
pi − pj

)
= 0 (1)  

where i is the pore body index, j is the index of neighboring pore body or 
microporosity grid, Ni is the full coordination number of pore body i, p is 
the pressure, Tij is the transmissibility, and we neglect the gravitational 
force. For a pair of pore bodies, we assume all the viscous resistances are 
lumped into the pore throat; then, Tij is given by: 

Tij =
πR4

ij

8μlij
(2)  

where Rij is the equivalent radius of pore throat ij with respect to the 
pore-throat cross-sectional area, lij is the pore-throat length, μ is the 
dynamic viscosity. 

The flow in microporosity is assumed to be described by the Darcy’s 
law, resulting in the following conservation equation: 

∇ • q = ∇ •

(

−
k
μ∇p

)

= 0 (3)  

where q is the Darcy velocity. The control volume method is used in 
microporosity, associated with a Two-Point Flux Approximation (TPFA) 
scheme (Karimi-Fard et al., 2004; Aarnes et al., 2007). This gives rise to 

a similar form of discretized conservation equation as equation (1). 
Moreover, as illustrated in Fig. 6b, for a pair of microporosity grids, Tij is 
given by the harmonic average of the two transmissibilities: 

Tij =
aiaj

ai + aj
with ai =

Aiki

μdi
ni • f i, aj =

Ajkj

μdj
nj • f j (4) 

where ai is the transmissibility of grid i (or CVi), aj is the trans
missibility of grid j, Ai is the interface area between two control volumes, 
ki is the intrinsic permeability of grid i, di is the distance between the 
centroid of the interface and the centroid of grid i, ni is the unit vector 
normal to the interface inside grid i, and f i is the unit vector along the 
direction of the line joining the centroid of grid i to the centroid of the 
interface. 

At the interfaces of macropores and microporosity, we impose the 
conditions of flux and pressure continuities. As illustrated in Fig. 6C, for 
a pair of pore body and microporosity grid, Tij is given by the harmonic 
average of the two transmissibilities as (Karimi-Fard et al., 2004): 

Tij =
aiaj

ai + aj
with ai =

πR4
i

8μli
, aj =

Ajkj

μdj
nj • f j (5) 

where ai is the transmissibility of pore body i, aj is the trans
missibility of microporosity grid j, Ri is the equivalent radius with 
respect to the pore-body volume, li is the half pore-body length assumed 
to be equal to Ri, Aj is the interface area between pore body and 
microporosity grid, kj is the intrinsic permeability of grid j, and dj is the 
distance between the centroid of the interface and the centroid of grid j, 
nj is the unit vector normal to the interface inside grid j, and fj is the unit 
vector along the direction of the line joining the centroid of grid j to the 
centroid of the interface. 

Finally, all the discretized conservation equations can be assembled, 
yielding a coupled global system for solving pressure: 
[

PNM transmissibility coupling of PNM and Darcy
coupling of Darcy and PNM Darcy transmissibility

][
pPNM
pDracy

]

= [b]

(6)  

3.2. Transient compressible single-phase flow 

In the second physical model, we consider a transient compressible 
single-phase flow in multiscale digital rocks, to simulate gas production. 
The flow in macropores is discretized by a pore-network model and the 
backward Euler method as: 

Vi
ρt+Δt

i − ρt
i

Δt
= −

∑Ni

j=1
ρt+Δt

i max
(

Qt+Δt
ij , 0

)
−
∑Ni

j=1
ρt+Δt

j min
(

Qt+Δt
ij , 0

)
(7)  

where Vi is the volume of pore body i, ρ is the gas density, Qij is the 
volumetric flow rate given by the Hagen-Poiseuille equation as Qij =

Tij

(
pi − pj

)
, t is the current time, and Δt is the time step. We use the 

upwind gas density to calculate mass flow rates inward and outward the 
pore body. Without loss of generality, we assume the idealized gas law 
which relates density to pressure as p = ρRT where R is the universal gas 
constant and T is the temperature. Then, equation (7) can be cast into: 

Vi
pt+Δt

i − pt
i

Δt
= −

∑Ni

j=1
pt+Δt

i max
(

Tij

(
pt+Δt

i

− pt+Δt
j

)
, 0

)
−

∑Ni

j=1
pt+Δt

j min
(

Tij

(
pt+Δt

i − pt+Δt
j

)
, 0

)
(8)  

where gas pressure at the new time is the only unknown variable, and 
the transmissibility is the same as in equation (2). 

With the assumption of idealized gas law, the mass conservation in 
microporosity is given as: 

ε
RT

∂p
∂t

+∇ •

(

− ρ k
μ∇p

)

= 0 (9) 
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where ε is the porosity. We use the finite volume method and the 
backward Euler method to discretize the equation. The interface con
dition and treatment are the same as those in equation (5). Moreover, it 
is worth noting that the unknown variable pt+Δt will go into the coeffi
cient matrix (refer to equation (6)), yielding a nonlinear system of 
algebraic equations for solving pressure. 

3.3. Transient solute transport 

In the last physical model, we consider passive transport of a dilute 
solute in water. We neglect dispersion in both macropores and micro
porosity, due to small Péclet number values under consideration. In the 
modeling, incompressible water flow is solved by the model presented in 
Section 3.1, which provides the flux field to solute transport. Solute 
transport in macropores is discretized by a pore-network model and the 
backward Euler method as: 

Vi
Ct+Δt

i − Ct
i

Δt
= −

∑Ni

j=1
Ct+Δt

i max
(
Qij, 0

)
−
∑Ni

j=1
Ct+Δt

j min
(
Qij, 0

)

−
∑Ni

j=1
Γij

(
Ct+Δt

i − Ct+Δt
j

) (10)  

where Ci is the solute molar concentration in pore body i, Qij is the flux 

from the steady-state single-phase flow simulation, Γij denotes the 
diffusive transmissibility for solute diffusion. For a pair of pore bodies, 
Γij is approximated by: 

Γij =
AijDij

lij
(11)  

where Aij is the cross-sectional area of pore throat ij, Dij is the molecular 
diffusivity. 

The mass conservation of solute in microporosity is given as: 

ε ∂C
∂t

+ q • ∇C − ∇ • (D∇C) = 0 (13)  

which is discretized by the finite volume method and the backward 
Euler method. For a pair of microporosity grids, Γij is given by the 
harmonic average of the two diffusive transmissibilities: 

Γij =
aiaj

ai + aj
with ai =

AiDe
i

di
ni • f i, aj =

AjDe
j

dj
nj • fj (14) 

where De
i is the effective molecular diffusivity in microporosity grid i. 

The resultant discretized equation is similar to equation (10) where Vi is 
replaced with Viεi. 

Fig. 6. (A) Schematic of the interface coupling between macropores and microporosity. (B) Geometrical representation of two adjacent control volumes and the 
definition of different parameters involved in transmissibilities in microporosity. (C) Geometrical representation between a macropore and microporosity. 
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At the interfaces of macropores and microporosity, we impose the 
conditions of solute flux (both advective and diffusive ones) and con
centration continuities. For a pair of pore body and microporosity grid, 
similar to the calculation of Tij in equation (5), Γij is given by: 

Γij = (
AiDi

li

AjDe
j

dj
nj • f j)/(

AiDi

li
+

AjDe
j

dj
nj • f j) (15)  

where Ai is the equivalent cross-sectional area as πR2
i , Di is the molecular 

diffusivity, and De
j is the effective diffusivity in microporosity grid j. 

Notice that Di is equal to Dij in equation (11) so long as dispersion in 
macropores is negligible. Finally, notice that the advective flux Qij will 
go into the coefficient matrix (refer to equation (6)), yielding a linear 
system of algebraic equations for solving concentration. 

4. Results and discussion 

Two multiscale digital rocks with different complexities of porous 
structures have been used in this work, namely, a synthesized multiscale 
Berea sandstone and a real Estaillades carbonate rock. Their numerical 
results of flow and transport are presented separately. 

4.1. Synthesized multiscale digital rock 

4.1.1. Computational meshes 
A digital rock of Berea sandstone from the Imperial College Open 

Source library is used. It has the size of 4003 voxels with the resolution of 
5.345 µm. To reduce computational efforts, we extracted a 2003 sub
volume from the image as our study domain. As shown in Fig. 7A, the 
white and blue voxels are solid and void spaces, respectively. The 
porosity and permeability of the subvolume are 19.8 % and 0.8 Darcy, 
respectively, which are close to those (19.6 % and 1.2 Darcy) of the 
original image. To synthesize a multiscale digital rock, we first gener
ated the watersheds of solid and void spaces, and then randomly filled 
25 % of solid watersheds and 25 % of void watersheds by microporosity, 
corresponding to a ratio of grain-filling to pore-filling of 1. The final 
ternary image is shown in Fig. 7B, where the blue and grey are macro
pores and microporosity, respectively. The numbers of their voxels are 
around 1.22 million and 1.9 million respectively. For simplicity, 
microporosity here is assumed to be homogeneous and isotropic with 
porosity of 31 %. The total porosity of the whole multiscale digital rock 
is around 22 %. 

With a maximum of three-level coarsening, three types of micropo
rosity grids were generated by the developed algorithm in Section 2, 
which were labeled as CG1, CG2, and CG3. CG0 consisting of original 
microporosity voxels was set as the reference to evaluate the perfor
mance of CG1, CG2, and CG3. CG1 was generated by the basic coars
ening algorithm with a kernel size of 23. CG2 has the highest mesh 
quality, which was generated by the basic coarsening algorithm together 

with the transition-layer module and the outward-coarsening module. 
CG3 was generated by the basic coarsening algorithm together with the 
transition-layer module, the outward-coarsening module, and the 
interface-coarsening module as shown in Fig. 7C. Moreover, to further 
reduce the number of grids in the vicinity of the interfaces between 
macropores and microporosity, we deactivate erosion operation in the 
first level coarsening. In other words, the maximum grid size on the 
interfaces is 23 voxels as shown in Fig. 7D. Therefore, GC3 should have 
higher mesh quality than GC1. Table 1 gives the details of the four 
computational meshes, which will be used in the modeling of flow and 
transport. 

4.1.2. Absolute permeability 
For an incompressible single-phase flow, we impose the inlet and 

outlet pressure boundary conditions along the Z direction and the no- 
flux boundary condition for the remainder. The pressure difference be
tween the inlet and outlet is set to 100 Pa. Notice that the inlet and outlet 
can include both macropores and microporosity grids, depending on the 
porous structures under study. The resultant system of linear algebraic 
equations for pressures in both macropores and microporosity are solved 
by the open source library, Eigen (Guennebaud G, Jacob B, et al., 2010). 
Three microporosity permeabilities of 5 mD, 50 mD, and 500 mD have 
been used in the simulations, and the corresponding absolute perme
abilities of the multiscale rock are calculated by the Darcy equation. 
With CG0 microporosity grids, the absolute permeabilities of 229 mD, 
297 mD, and 737 mD for the artificial sample are obtained for micro
porosity permeabilities of 5 mD, 50 mD, and 500 mD, respectively. 
Because half of the microporosity in the synthesized multiscale rock is 
the pore-filling type, the absolute permeabilities are smaller than that (i. 
e., 800 mD) of the original Berea rock. 

To evaluate the impact of coarsening microporosity on the prediction 
of permeability, we calculate the relative errors (%) for microporosity 
grids CGi (i = 1,2,3) by RECGi (%) = 100×

(KCG0 − KCGi)/(KCG0 − KPNM), where KPNM is the permeability (219 mD) 
of the pore-network of macropores. As shown in Fig. 8, the absolute 

Fig. 7. (A) 3D binary image of Berea sandstone (2003 voxels) in which the white represents non-porous solid, and the blue represents void spaces. (B) The syn
thesized multiscale Berea digital rock in which 25% of solid and 25% of void spaces are filled with microporosity in grey color. (C) The computational mesh with CG3 
coarsened microporosity grids. (D) A 2D zoom-in of microporosity grids. (For interpretation of the references to color in this figure legend, the reader is referred to 
the web version of this article.) 

Table 1 
The details of CG0, CG1, CG2, and CG3 microporosity grids.  

Grid type CG0 CG1 CG2 CG3 

macropores 468 
8 × 8 × 8 – 1003 40 98 
4 × 4 × 4 – 9520 8350 10,377 
2 × 2 × 2 – 60,341 93,009 111,405 
2 × 2 × 1 – – – 24,945 
2 × 1 × 2 – – – 10,964 
1 × 2 × 2 – – – 6242 
1 × 1 × 1 1,901,511 295,967 602,559 127,363 
In total 1,901,979 367,299 704,426 291,862 
Reduction of grids 0 % 80.7 % 63 % 84.7 %  
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permeabilities of the multiscale rock under different microporosity 
permeabilities are underestimated. CG2, with the highest mesh quality, 
gives rise to the smallest relative errors of around 3 %. However, it needs 
the most computational efforts (see Fig. 12A). Compared to CG2, CG3 
doubles the relative errors. This indicates that high-resolution interface 
grids between macropores and microporosity are beneficial to numerical 
accuracy. Moreover, if only the basic coarsening algorithm is used as for 
CG1, the largest relative errors are seen. 

4.1.3. Compressible gas production 
In the modeling of transient compressible gas flows, we set up an 

initial gas pressure of 5 MPa in the domain, and its difference from the 
outlet pressure (i.e., the gas production pressure) at the max Z is set to 
100 Pa. The no-flux boundary condition is imposed for the remainder. 
Together with the boundary conditions, the nonlinear governing equa
tions (8), 9) are fully coupled and numerically solved by the Newton- 
Raphson method. To speed up the modeling, an adaptive time- 
stepping method based on the number of Newton iterations is used. 
We set an initial time step of 10-9 s, and then adjust the value every 20 
timesteps. If the number of iterations is greater than 25, the time step is 
halved; If less than 15, the time step is doubled; Others remain un
changed. The porosity and permeability of microporosity are assumed to 
be 0.31 and 5 mD, respectively. We calculate the gas production of 
macropores, microporosity, and full-domain, respectively, and 
normalize it with the initial gas mass in the sample. When the normal
ized gas production reaches 0.99, the simulation ends; and the final 
physical time in CG0 is used as the reference time. 

Fig. 9A shows the gas production over time from macropores, 
microporosity, and full-domain in CG0. The gas production rate of 
macropores is much higher than that of microporosity, primarily due to 
the lower permeability of microporosity. Moreover, the gas production 
curves of macropores and microporosity behave similarly, rather than 
separate from each other. This is mainly because half of the micropo
rosity is pore-filling, which reduces the permeability of the original 
Berea rock from 800 mD to 229 mD as mentioned above. 

In contrast to permeability calculations, gas production is a dynamic 
process and the influence of coarsening may change over time. We take 
the production curves of CG0 as the reference, and calculate the relative 
errors for the three different coarsening schemes by RECGi (%) = 100×

(ṁCG0 − ṁCGi)/ṁCG0, where ṁ can be the gas production of macropores, 
or microporosity, or full domain. As shown in Fig. 9B, all coarsening 

Fig. 8. Impact of coarsening microporosity on the prediction of absolute 
permeability. 

Fig. 9. (A) The dimensionless gas production over time from microporosity, macropores, and full-domain of CG0. (B-D) The relative errors of gas production for the 
three coarsening schemes compared with the reference value (i.e., gas production of CG0). 
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schemes underestimate the gas production of microporosity, because 
coarsening deteriorates the accuracy of pressure gradients in micropo
rosity. It is seen that CG2 presents the smallest relative errors followed 
by CG3 and CG1. Moreover, as expected, they are profound at the early 
stage of gas production, where pressure gradients are large. Due to the 
complex flow interactions between microporosity and macropores, 
coarsening also leads to the errors in macropores, but they are signifi
cantly smaller than those of microporosity as shown in Fig. 9C. Finally, 
the relative errors of the total gas production are shown in Fig. 9D. For 
the case studies in this work, CG2 results in the smallest errors followed 
by CG3 and CG1, which are consistent with the permeability simulations 
in Section 4.1.2. 

4.1.4. Transient solute transport 
In the case studies of transient solute transport, a steady-state flow 

field is first built, where the pressure drop along the Z direction is set to 
100 Pa. Instead of the water flow rate, we vary the molecular diffusivity 
of solute, to obtain different Péclet number values (i.e., Pe = qL/D where 
q is the Darcy velocity, L is the domain length, and D is the molecular 
diffusivity). For each mesh type, case studies under four different Pe 
values (i.e., 0.1, 1, 10, 100) are conducted. For the solute transport 
equations (11), 14), we impose the inlet concentration of 1 mol/m3 at 
the min Z, and the Neumann boundary condition of zero concentration 
gradient at the max Z. Solute is initially absent in the domain. The time 
step is determined by Δt = min(Viεi/Qout

i ,l2ij/4Dij), where Qout
i is the fluid 

outflux in either pore body i or microporosity grid i (Qin et al., 2016). 
Finally, for all the simulations, we set the porosity, permeability, and 
effective diffusivity coefficient of solute to 0.31, 5 mD, and 0.09, 
respectively. For comparisons among different numerical results, each 
numerical simulation is ceased when the outlet solute concentration 
reaches 99 % of the inlet concentration. 

To make numerical results more intuitive, we use the inlet concen
tration to define the dimensionless average outlet concentration, and the 
transport time of each case is also nondimensionalized by a fixed 
advection time, t = L/v, where v is the Darcy velocity. Fig. 10 shows the 

concentration distributions in CG0 under different Pe values. With the 
increase of Pe, the migration modal of solute changes from diffusion to 
advection. Microporosity generally retards solute transport due to its 
much lower transmissibility. If we treat microporosity as solid phase in 
the image segmentation, as shown in Fig. 11A, the breakthrough curve 
would be steeper under Pe = 100, while the effect of microporosity on 
the breakthrough curve is minor under Pe = 0.1 as expected. Fig. 11B 
shows the breakthrough curves of CG0 under four different Pe values. It 
can be seen that the larger the Pe value is, the longer the tailing of the 
breakthrough curve is. Notice that in our case studies we decrease solute 
diffusivity to obtain a larger Pe value. Therefore, increasing Pe causes 
less solute transport from macropores to microporosity, and then longer 
tailing of the breakthrough curve. Moreover, it is found that the 
breakthrough curves intersect each other. This phenomenon can be well 
explained as follows. Under a large Pe value (e.g., 100 in our case 
studies), solute prefers to transport in connected macropores by advec
tion, and slowly diffuses into microporosity (refer to Fig. 10); as a result, 
we would expect a high outlet concentration early and a long tailing of 
the breakthrough curve. In the opposite, under a smaller Pe value (e.g., 
1.0), both advection and diffusion are important to solute transport; as a 
result, we would expect high outlet concentration later, and the break
through curve will insect with that of a large Pe value as shown in 
Fig. 11B. 

We take the breakthrough curve of CG0 as the reference to calculate 
the relative errors for the three different coarsening schemes by 
RECGi (%) = 100× (CCG0 − CCGi)/CCG0. Because the trends of relative 
errors under Pe values of 1, 10, and 100 are similar, we only plot the 
results of Pe = 0.1 and Pe = 100 in Fig. 11C and Fig. 11D, respectively. It 
is seen that the absolute relative errors decrease over time for each type 
of mesh. Under high Pe values, the relative errors are minor but nega
tive, which means coarsening microporosity slightly overestimates the 
breakthrough curve. While under low Pe values, the relative errors are 
large (up to 10 % at the beginning) and positive, which means coars
ening microporosity underestimates the breakthrough curve. As we 
know, under high Pe values, microporosity retards solute transport, and 

Fig. 10. Distributions of solute concentration normalized by the inlet concentration in CG0 under different Péclet number values, and normalized outlet concen
tration values. From top to bottom, the Péclet number value increases from 0.1 to 100. From left to right, the normalized outlet concentration increases from 0.2 
to 0.99. 
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coarsening microporosity would underestimate solute transport from 
macropores to microporosity. As a result, the breakthrough curve will be 
overestimated and the relative errors will be negative. 

4.1.5. Reduction of computation 
The computational cost is an important metric to evaluate the per

formance of coarsening microporosity. In this work, all the simulations 
are performed by using a single core on a personal computer with an i7- 
10700 CPU. The adapting time steps and residuals for convergence 
(10− 8) are identical for the different coarsening schemes. The speedup 
ratio is the ratio of the computation time of CG0 to that of CGi. Either a 
compressible flow or solute transport simulation of CG0 needs several 
weeks to accomplish. As shown in Fig. 12, for different case studies, the 
speedup ratios are 0.9 ~ 2 times the coarsening ratios (see Table 1). 

In the permeability modeling, as shown in Fig. 12A, the increase of 

microporosity permeability leads to faster convergence. The maximum 
speedup ratio of CG3 can reach 12. For the compressible gas production 
simulations with the microporosity permeability of 5 mD, similar to the 
permeability modeling, the speedup ratios are approximately equal to 
the coarsening ratios. For the solute transport simulations, the speedup 
ratio can be increased at low Pe values. Overall, coarsening micropo
rosity substantially reduces computation time and memory required for 
matrix assembly and numerical iterations. Based on the case studies in 
this work, the coarsening scheme of CG3 is regarded to be optimal, 
which can balance accuracy and computational efficiency. Finally, it is 
worth noting that the speedup ratios can be substantially increased by 
optimizing the numerical implementational algorithms, which is beyond 
the scope of this work. 

4.2. Estaillades carbonate rock 

The second test sample is an Estaillades carbonate rock, which is 
composed of 99 % calcite and contains both intergranular macropores 
and sub-resolution intragranular microporosity (Dautriat et al., 2011). 
The raw data, including the CT images of dry, saturated, and different 
capillary pressures, as well as the porosity map, and the invasion 
capillary pressure (denoted by Pct) map, were published by (Wang et al., 
2022) on the Digital Rock Portal (https://www.digitalrocksportal.org/ 
projects/363). The porosity map was acquired by comparing the dif
ferences between the scanning images taken under dry and saturated 
conditions. The CT images under different capillary pressures were 
processed by the differential imaging technology to obtain the Pct map. 
The introduced data is very suitable to test and study our hybrid model. 

Fig. 11. (A) The breakthrough curves of CG0 under four different Pe values. The horizontal axis denotes the dimensionless transport time normalized by the 
advection time. The vertical axis denotes the dimensionless averaged outlet concentration normalized by the inlet concentration. (B) The breakthrough curves of CG0 
under Pe = 0.1 and Pe = 100, with and without the involvement of microporosity. In the latter case, we only simulate solute transport in macropores while 
microporosity is assumed to be solid. (C) and (D) The relative errors of the breakthrough curves from the three coarsened meshes compared with CG0 under Pe = 0.1 
and Pe = 100. 

Fig. 12. Speedup ratios by coarsening microporosity under different modeling 
scenarios: (A) permeability simulations, (B) compressible gas production sim
ulations with the microporosity permeability of 5 mD, and (C) solute transport 
simulations. 
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To reduce computational efforts, we extract a subdomain of 4003 

voxels from the original images (1316 × 1316 × 1087 voxels with the 
voxel resolution of 6.5 μm). The macropores and microporosity of the 
subdomain account for 6 % and 64.8 % of the whole voxels, respectively. 
The total porosity is 24.2 %, which is basically consistent with the value 
of the original image (25.4 %). We adopt the optimal coarsening scheme 
of CG3 discussed in Section 4.1 to generate the computational mesh, 
which contains 1817 macropores and about 4.34 million microporosity 
grids as shown in Fig. 13A. The number of computational grids is 
reduced by about 90 % compared to the number of original micropo
rosity voxels. Moreover, the porosity and invasion capillary pressures of 
microporosity grids are obtained by averaging the corresponding voxel 
values of each grid based on the original porosity and Pct maps. Fig. 13B 
and Fig. 13C show the distributions of Pct and porosity in the coarsened 
microporosity grids. 

In practice, according to the characterization level of porous struc
tures of a multiscale digital rock, we may model its permeability in two 
ways. In the first case study, we have the data of porosity and invasion 
capillary pressure maps. Then, the absolute permeability of each 
microporosity grid may be estimated by the Katz-Thompson equation 
(Katz & Thompson, 1986), k = εr2/32τ2, where ε is the porosity, τ is the 
tortuosity, and r is the mean pore radius. Furthermore, we assume the 
same type of microporosity with a constant tortuosity of 1.75. The mean 
pore size is calculated by the Young-Laplace equation, r = 2σcosθ/Pc, 
where Pc is approximated by Pct, σ is the water-decane interfacial tension 
of 48.3 mN/m, and θ is the static contact angle which is assumed to 
0◦ (Wang et al., 2022). 

Experimentally determining the Pct map is usually costly and time- 
consuming. Moreover, it has been shown that mean pore sizes (or Pct) 
are not correlated to microporosity porosity for Estaillades (Wang et al., 
2022). Therefore, in case 2, we may assume a unified average pore 
radius for all microporosity, which can be calculated from a capillary 
pressure curve. Here, we use the capillary pressure curve of the Estail
lades core given by (Bultreys et al., 2015), and the computed average 
pore radius is 3.6 μm. Together with the porosity map, we can use the 
Katz-Thompson equation to estimate the absolute permeability of each 
microporosity grid. 

The predicted permeability of case 1 is 160.1 mD, which is in good 
agreement with the reported values of 86.4 ~ 326.0 mD (Bauer et al., 
2012; Blunt et al., 2013; Alyafei & Blunt, 2016). To some extent, this 
indicates the reliability of our hybrid model for a realistic multiscale 
digital rock. In comparison to case 1, a much lower permeability of 41.8 
mD is predicted in case 2. This illustrates on the important role of pore- 
size heterogeneity of microporosity in the permeability modeling, and it 
would also apply to other flow and transport processes. To further 
highlight the importance of characterizing the pore-size heterogeneity 
of microporosity, Fig. 14 shows the pressure distributions in the two case 
studies and their pressure difference. It is seen that the maximum 
pressure difference is up to ± 15 % concerning the pressure drop 
throughout the domain. 

5. Conclusions and outlook 

Multiscale porous structures in many geological rocks pose great 
challenges for digital rock physics in both imaging and modeling as
pects. A pore-network-continuum hybrid modeling framework is 
promising to numerical studies of flow and transport in a standard 
multiscale digital rock, but remains computationally expensive. In this 
work, we have developed a novel and robust algorithm for coarsening 
microporosity voxels of a multiscale digital rock, which includes a basic 
coarsening scheme and three additional modules with various en
hancements. Together with the pore network of macropores by image- 
based extraction, we can generate efficient computational meshes for 
hybrid modeling. Moreover, we have numerically implemented the 
hybrid models of single-phase incompressible flow, transient 
compressible flow, and transient solute transport. A number of case 
studies of synthesized multiscale digital rocks and natural Estaillades 
rock have been conducted, mainly to investigate the performance of the 
developed microporosity coarsening algorithm and the effects of 
microporosity on flow and transport in multiscale rocks. The main 
conclusions drawn from our studies are:  

(1) For a multiscale digital rock with half pore-filling and half grain- 
filling homogeneous microporosity, a three-level coarsening of 
microporosity can be achieved, and reduces the computational 
mesh by more than 80 %. The coarsening has negligible impacts 
on compressible gas production curves and breakthrough curves 
of solute transport, and the relative errors of permeability pre
diction are below 10 %. 

(2) Pore-filling microporosity provides the connectivity of macro
pores, which contributes to the intrinsic permeability of a mul
tiscale rock, particularly for highly permeable microporosity. 
Microporosity retards solute transport, and influences break
through curves considerably. It also significantly influences gas 
production curves. In practice, microporosity needs to be 
considered for the modeling of multiscale digital rocks.  

(3) The developed pore-network-continuum hybrid model is suitable 
to a realistic multiscale digital rock. It can substantially reduce 
computational efforts, while keeping the high resolution of 
microporosity heterogeneities. Fine characterization of pore-size 
distributions in microporosity is crucial to the prediction of rock 
permeability as well as local flow fields. 

Finally, we comment on a few aspects regarding the present pore- 
network-continuum hybrid model aided by grid coarsening. First, 
compared to DPNMs, our model can capture microporosity heteroge
neity at a higher spatial resolution, while maintaining much of the 
computational efficiency. However, parallel computing may need to be 
employed if additional complexities are considered, particularly for 
transient case studies and extended multiphase dynamics. Second, the 
current algorithm of microporosity coarsening uses a geometrically 
dependent criterion to determine which voxels to coarsen. This may lead 

Fig. 13. (A) The computational grids by the optimal coarsening scheme of CG3. (B) The invasion capillary pressure and (C) porosity distributions of the compu
tational grids. 
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to over-coarsening of regions with strong variations of microporosity 
properties (e.g., porosity and pore size), which may cause errors in the 
numerical predictions. Physics-based coarsening methods may need to 
be developed to address this shortcoming. Finally, the accuracy of the 
present model relies on characterization of microporosity properties. 
Future studies will be focused on multiscale imaging and integration of 
microporosity flow parameters into a representative multiscale digital 
rock. 
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