Journal of Hydrology 633 (2024) 131003

ELSEVIER

journal homepage: www.elsevier.com/locate/jhydrol

Contents lists available at ScienceDirect

Journal of Hydrology

Research papers

Modeling of flow and transport in multiscale digital rocks aided by grid
coarsening of microporous domains

Bowen Shi? Han Jiang®"", Bo Guo®, Jian Tian*", Chao-Zhong Qin®""

@ School of Resources and Safety Engineering, Chongqing University, Chongqing, China
Y State Key Laboratory of Coal Mine Disaster Dynamics and Control, Chongging University, Chongging, China
¢ Department of Hydrology and Atmospheric Sciences, University of Arizona, Tucson, AZ, USA

ARTICLE INFO

This manuscript was handled by Yuefei Huang,
Editor-in-Chief, with the assistance of Delphine
Roubinet, Associate Editor

Keywords:

Subsurface porous media

Permeability

Breakthrough curve

Multiscale digital rock
Pore-network-continuum hybrid model
Microporosity

ABSTRACT

Many subsurface porous media such as soils, carbonate rocks, and mudstones possess multiscale porous struc-
tures that play an important role in regulating fluid flow and transport therein. A pore-network-continuum
hybrid model is promising for numerical studies of a multiscale digital rock. It is, however, still prohibitive to
the REV-size modeling because tens of millions of microporosity voxels may exist. In this work, we develop a
novel and robust algorithm for coarsening microporosity voxels of a multiscale digital rock. Then, we combine
coarsened microporosity grids with the pore network of resolved macropores to form efficient computational
meshes. Furthermore, a pore-network-continuum simulator is developed to simulate flow and transport in both a
synthesized multiscale digital rock and a realistic Estaillades carbonate rock. We show that the coarsening al-
gorithm can reduce computational grids by about 90%, which substantially reduces computational costs.
Meanwhile, coarsening microporosity has a minor impact on the predictions of absolute permeability, gas
production curves, and breakthrough curves of solute transport. We illustrate the mechanisms of flow and
transport in multiscale porous media induced by microporosity. Finally, the efficient hybrid model is used to
predict the absolute permeability of an Estaillades digital rock. The numerical prediction matches well with the
reported experimental data. We highlight the importance of characterizing mean pore-size distributions in
microporosity for the prediction of rock permeability and local flow fields. The developed pore-network-
continuum hybrid model aided by grid coarsening of microporosity serves as a useful numerical tool to study
flow and transport in multiscale porous media.

1. Introduction

2020) and relative permeability (Dong & Blunt, 2009; Zhao et al., 2020).
Proper image segmentation of pore spaces is the prerequisite for

With the rapid development of non-invasive imaging techniques and
computation performance, Digital Rock Physics (DRP) has been playing
an important role in understanding the fundamental physics of flow and
transport in porous media (Blunt et al., 2013; Wildenschild & Sheppard,
2013; Qin et al., 2021a, 2022). The most relevant applications include
geological sequestration of carbon dioxide (Andrew et al., 2014), un-
derground hydrogen storage (Jangda et al., 2022), contaminant trans-
port in groundwater (Gharedaghloo et al., 2018), and unconventional
oil/gas recovery (Guo et al., 2018). Nowadays, from high-resolution
images, one can routinely construct realistic porous structures, and
conduct pore-scale numerical simulations of material properties such as
absolute permeability (Khan et al., 2011; Yang et al., 2019), effective
diffusivity (Xu, 2022), capillary pressure (Raeini et al., 2014; Chen et al.,

modeling flow and transport. For rocks with unimodal pore-size distri-
butions, segmentation can be well accomplished, sometimes calibrated
by measured porosity. However, many natural rocks present complex
and multiscale pore structures, such as soils, carbonate rocks, tight
sandstones, and mudstones (Bijeljic et al., 2013; Li et al., 2021; Qin
et al., 2021b; Fan et al., 2022; Dai et al., 2023). Extensive Mercury
Intrusion Porosimetry (MIP) and Nuclear Magnetic Resonance (NMR)
tests have shown bimodal or even multi-modal pore-size distributions of
these core samples (Tanino & Blunt, 2012; Nie et al., 2021). Moreover,
pore diameters at peak can be different from each other by several or-
ders of magnitude (Lin Ma et al., 2021). Due to the trade-off between
image resolution and field of view, it remains prohibitive to obtain a
REV-size image with all details of multiscale pore structures. Therefore,
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in the construction of multiscale digital rocks, the concept of Sub-
Resolution Porosity (SRP) (or microporosity), which composes of
many micropores that cannot be identified at the current imaging res-
olution, has been proposed (Soulaine et al., 2016; Guo et al., 2018). In
practice, microporosity may be segmented according to the gray values
of a dry sample image (Bultreys et al., 2015), or more accurately, based
on the image difference between dry and fully-saturated sample scan-
ning (Wang et al., 2022).

When modeling flow and transport in a multiscale digital rock,
microporosity may be treated as solid or void spaces by inaccurate
segmentation. This can alter the connectivity of pore spaces, and may
lead to significant errors in the prediction of flow fields and material
properties (Jacob et al., 2021). To address the influences of micropo-
rosity on flow and transport, a few hybrid models have been developed
in the past few years (Bauer et al., 2012; Soulaine & Tchelepi, 2016; Guo
et al., 2018; 2019; Weishaupt & Helmig, 2021; Wu et al., 2022). In
general, these models can be classified into two categories: Dual-Pore-
Network Models (DPNMs) and micro-continuum models. In a DPNM,
microporosity was represented by a fine-scale pore network (Jiang et al.,
2013; Mehmani & Prodanovi¢, 2014; Yang et al., 2015; de Vries et al.,
2017). However, limited by computation, fine-scale pore networks were
numerically generated with a small number of pore elements (Mehmani
& Prodanovic, 2014). Alternatively, microporosity was represented by
the so-called micro-links (Bultreys et al., 2015; Ruspini et al., 2021). In
principle, a micro-link was a conceptual porous throat, whose connec-
tion with macropores and hydraulic conductivity could be inferred from
images. Although this approach considers realistic microporosity dis-
tributions, and requires less computation than a traditional DPNM, its
accuracy depends on operator-supplied parameters (e.g., micro-link cut-
off length). Most recently, Rabbani et al. (Rabbani et al., 2020) pre-
sented a triple pore-network model for gas flow in fractured multiscale
digital rocks, in which microporosity was discretized by its watersheds.
This leads to a network of microporosity elements, which resemble the
pore elements of fractures and macropores. To the best of our knowl-
edge, current DPNMs undermine microporosity heterogeneity (e.g.,
porosity, permeability), which may play an important role in regulating
flow and transport.

On the other hand, in a micro-continuum model, flows in micropo-
rosity and resolved macropores are respectively described by Darcy’s
law and Stokes equation. Moreover, the coupling of the two-scale flows
is implemented by the well-known Darcy-Brinkman-Stokes equation
(Soulaine & Tchelepi, 2016; Guo et al., 2019). Obviously, numerical
predictions by micro-continuum models have high fidelity, which can be
used to calibrate and verify other numerical models such as DPNMs.
However, it is worth noting that micro-continuum models are compu-
tationally expensive, and prohibitive to the modeling of a REV-size
multiscale digital rock, particularly for the two-phase flow modeling.
For instance, for a 200° digital rock, it took about 120 h to simulate a
two-phase flow process by parallel computation of ten 28-core Broad-
well Xeon nodes (Carrillo et al., 2022).

To take advantage of both DPNMs and micro-continuum models,
recently, the framework of a pore-network-continuum hybrid model has
been proposed and implemented (Zhang et al., 2019; 2023). In this
framework, flow and transport in macropores are described by a
computationally efficient pore-network model, while a Darcy-scale
model is used for microporosity. When microporosity voxels are used
as computational grids as usual, computational efforts pertaining to the
modeling of microporosity will be prohibitive. This is because tens of
millions of voxels of microporosity may present in a standard multiscale
digital rock (i.e., 1000 voxels). As we know, microporosity may not
necessitate high-resolution computational grids, given the fact that
gradients of flow and transport in microporosity are much smaller than
those in macropores. Therefore, further development of coarsening of
the microporosity voxels is promising, and crucial to the application of a
pore-network-continuum model.

There have been many studies on voxel-based mesh coarsening, of
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which uniformly reducing the image resolution (Maire, 2003) would be
the simplest. However, this gives rise to the loss of geometrical details,
and thus impacts the accuracy of numerical results (Shah et al., 2016).
To solve the issue, coarsening methods based on the quadtree/octree
algorithm were used (Legrain et al., 2011; Lei Ma et al., 2023), which
can be categorized into coarse-to-fine and fine-to-coarse. The former
first extracts smoothed geometrical interfaces of an image. Then, the
interfaces are projected onto pre-defined background grids, which are
usually quite coarse. The grids intersected with the interfaces are
continuously subdivided by the octree algorithm. Finally, a local
refinement may be conducted before the tessellation procedure, in order
to maintain high resolution of the geometrical interfaces (Verhoosel
et al., 2015). This algorithm has been used in many CFD software (e.g.,
snappyHexMesh in OpenFoam, Adaptive Mesh Refinement in Fluent and
Comsol). However, it aims to approach a smooth boundary or interface
which may be not necessary to the one represented by voxels. Also, it is
worth noting that voxel-representation of boundaries or interfaces is the
most accurate for a given CT scanning image. The latter starts with
image voxels, and then merges eight grids (or four in 2D), which belong
to the same material and have one common node, into one coarsening
grid. Multi-level coarsening and smoothening between different levels of
coarsening grids can be conducted (Fischer & Eidel, 2020). Although
quadtree/octree-based coarsening methods have been widely used in
image-based numerical studies (Legrain et al., 2011; Olshanskii et al.,
2013; Gackiewicz et al., 2021; Duan et al., 2022; Gote et al., 2022), their
application in the problem of flow and transport in a multiscale digital
rock has not been reported yet. Regarding the modeling of flow and
transport, we need to properly treat the interfaces between macropores
and microporosity, and allocate coarsest grids in microporosity regions
of low flow gradients, which will be addressed in this work. Moreover,
these coarsening methods are usually time-consuming (Frisken & Perry,
2002).

In this work, we develop a novel coarsening algorithm for micro-
porosity voxels, which uses multiple consecutive convolution operations
on voxels. The algorithm has the advantages of robustness, high effi-
ciency, and flexible controls on coarsening processes. Together with our
in-house pore-network-continuum modeling simulator, a number of case
studies including the modeling of absolute permeability, compressible
gas production, and solute transport in both a synthesized multiscale
digital rock and an Estaillades carbonate rock have been conducted. We
analyze the performance of coarsening microporosity in terms of nu-
merical accuracy and computational efficiency, and investigate the ef-
fects of microporosity on flow and transport in multiscale porous media.

The remainder of the paper is organized as follows. In Section 2, we
present the coarsening algorithm for microporosity voxels in detail, and
the generation of computational meshes for our pore-network-
continuum modeling simulator. In Section 3, we describe the involved
physical models and their numerical implementation. In Section 4, we
first show numerical results of flow and transport in an artificial mul-
tiscale sample, based on four different types of coarsened grids of
microporosity. We then propose an optimal coarsening for micropo-
rosity, in order to balance computational efficiency and numerical ac-
curacy. Moreover, we predict the absolute permeability of Estaillades
limestone, and compare it with experimental data. Finally, we close with
the main conclusions in section 5.

2. Generation of computational meshes

The computational mesh of a multiscale digital rock consists of the
pore network of macropores and the grids of microporosity. To reduce
computational efforts, we have developed a novel algorithm for gener-
ating coarsened computational grids from initial microporosity voxels.
In what follows, the pore-network extraction of macropores is presented
in Section 2.1; the coarsening of computational grids for microporosity
is discussed in Section 2.2; and the fusion of pore network and micro-
porosity grids is given in Section 2.3. Moreover, we use a 2D ternary
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image of 402 as an example, to help readers understand the generation of
computational meshes. As shown in Fig. 1A, the white, the grey, and the
black denote void spaces, solid phase, and microporosity, respectively.

2.1. Pore network of macropores

A number of image-based pore-network extraction methods have
been reported in the literature (Lindquist et al., 1996; Silin et al., 2003;
Dong & Blunt, 2009; Rabbani et al., 2014; Gostick, 2017). In this work,
we use the open-source code, PoreSpy, which is built on the watershed
segmentation of pore spaces. The key steps involved in the extraction of
a pore network are prefiltering the distance map, eliminating saddle and
plateau peaks, merging nearby peaks, and segmenting pore spaces into
individual pore bodies by using a marker-based watershed (Gostick,
2017).

By PoreSpy, we can obtain the volume, inscribed radius, and surface
area of each pore body, the cross-sectional area, inscribed radius, and
perimeter of each pore throat, and the connectivity map of pore bodies.
We assign all pore volumes to pore bodies, and pore throats are assumed
to be volumeless. Fig. 1 shows a 2D schematic of the pore-network
extraction. Presume that a segmented ternary image is ready for use.
We further process the image to a binarized image in which micropo-
rosity is treated as solid phase. Then, the binary image is provided to
PoreSpy for the pore-network extraction, while some key parameters
(such as Gaussian filter parameter sigma and structuring element size)
need to be paid attention to (Gostick, 2017). Finally, the extracted pore
network is shown in Fig. 1C.

2.2. Computational grids of microporosity

Instead of directly using microporosity voxels as computational
grids, we heavily coarsen microporosity voxels. Here, we first introduce
the basic coarsening algorithm. Then, we present three enhanced sub-
modules for potential improvement of mesh quality.

2.2.1. Basic coarsening algorithm

The algorithm proceeds in three main steps: (1) preparing the input
image and assigning weight values to its voxels; (2) conducting multiple
consecutive convolution operations; and (3) generating and numbering
the final computational grids of microporosity.

The flowchart of the basic coarsening algorithm is given in Fig. 2. For
a given raw image, we first identify the microporosity by thresholding.
We assign weight values of 1 and 0 to the microporosity voxels and the
remainder, respectively. Second, we preset the number of convolution

operations, N, and their kernels, (kﬁ(, k}",, k‘z) , where i is the level index of

convolution operation. Usually, we set a cubic kernel with the size of 25;

Journal of Hydrology 633 (2024) 131003

and the stride is set to the same as the kernel size. After each level of
convolution operation, we obtain a new feature map which is axially
half the size of the previous feature map. If the weight value in a cell is
equal to 8 (or 4! for 2D) in the i level feature map, its projecting
microporosity voxels can be coarsened to an i? level computational grid.
Before we go into the (i + 1)rh convolution operation, the weight values
smaller than 8 are reset to 0 in the feature map. It is worth noting that
the preset number of convolution operations, N, may not be achieved.
The maximum level of convolution operations, however, can be easily
determined by weight values in feature maps.

Once all convolution operations are completed, we start with the
final level of feature map and loop all the cells along x, y, and z di-
rections in turn, to coarsen and number the microporosity voxels. From
the final level of feature map to the input binary image, we sequentially
number all the computational grids of microporosity as well as their
projecting voxels.

Obviously, each computational grid is linked with its projecting
voxels. In such a way, for heterogenous microporosity, we may estimate
material properties of a coarsening grid by averaging its projecting voxel
values. We notice that if the size of an input image is not an integral
multiple of the kernel size, ghost non-microporosity voxels for convo-
lution operations can be added from the boundaries. Meanwhile, ver-
satile coarsening can be conducted by properly designing the kernel size.

To gain an intuitive understanding of the algorithm and its appli-
cation, the 2D ternary image in Fig. 1A is used as the input image. As
shown in Fig. 3A, we assign the weight value of 1 to the microporosity.
Fig. 3B-3D shows the feature maps of the three consecutive convolution
operations along with weight values in the cells. Fig. 3E shows the final
computation grids of the microporosity, which consist of 3 third-level
coarsening grids (8 x 8 voxels) in red, 7 s-level coarsening grids (4 x
4 vozxels) in yellow, 28 first-level coarsening grids (2 x 2 voxels) in
green, and 57 uncoarsened voxel grids, in a total of 95 grids comparing
to 473 original microporosity voxels. Notice that we first number pore
bodies of the pore network, then computational grids of the
microporosity.

2.2.2. Submodules for coarsening controls

One may be aware of that some issues are not addressed yet in the
basic coarsening algorithm, such as steep transition between grids and
lack of distribution optimization of grids. Therefore, we further develop
three most important submodules, namely, transition-layer module,
outward-coarsening module, and interface-coarsening module.
Together with the basic coarsening algorithm, they can help us improve
the mesh quality, and further reduce the number of computational grids
of microporosity.

The transition-layer module aims to keep smooth transition between
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Fig. 1. Schematic of the pore-network extraction. (A) A 2D ternary image of 402 pixels. (B) The binarized image as the input to PoreSpy for the pore-network
extraction. (C) The extracted pore network with the pore bodies numbered from 1 to 7, while their corresponding watersheds of pixels are also numbered from 1

to 7. In C, the pore bodies are represented by their inscribed circles in 2D.
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Fig. 2.

Flowchart of the basic coarsening algorithm for microporosity voxels.
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Fig. 3. Schematic of the basic coarsening algorithm. (A) The binary image in which the white denotes the microporosity, and the grey denotes macropores and solid.
(B) The feature map with their cell values after the first convolution operation. (C) The feature map with their cell values after the second convolution operation. (D)
The feature map with their cell values after the third convolution operation. (E) The computational grids of the microporosity where the red, the yellow, and the
green respectively denote the third-level coarsening grids with the size of 4° pixels, the second-level coarsening grids with the size of 42 pixels, and the first-level
coarsening grids with the size of 4! pixels. The white denotes the uncoarsened grids (i.e., the same as the original microporosity voxels). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)

different levels of coarsened grids. At the beginning of each convolution
operation in the basic coarsening algorithm, we conduct erosion oper-
ation (from scikit-image in Python) on the filtered feature map (refer to
Fig. 2), to find the outmost layer of the cells which satisfy the coarsening
criterion. Notice that in the filtered feature map, the cells with non-zero
values satisfy the coarsening criterion. Then, we reset the weight values
in the cells belonging to the outmost layer to 0. In other words, we

prevent these cells in the feature map from participating in the next level
of coarsening. Fig. 4A shows the computational grids of the micropo-
rosity under the transition-layer module. Compared to the grids in
Fig. 3E, the stiffness of transition regions has been dramatically reduced,
which is beneficial to the modeling of flow and transport in micropo-
rosity. We also observe that the third-level coarsening of this example is
not achieved under the transition-layer module, because a number of
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Fig. 4. Computational grids of the microporosity under different combinations of the three submodules. (A) Transition-layer module. (B) The combination of
transition-layer module and outward-coarsening module. (C) The combination of transition-layer module, outward-coarsening module, and interface-

coarsening module.

grids have been used as the transition layers.

The outward-coarsening module aims, in the last level of coarsening,
to coarsen microporosity voxels by starting from the center of each
microporosity region. As a result, the largest computational grids will
always locate around the center of microporosity where flow gradients
are usually lowest. To this aim, in the last convolution operation in the
basic coarsening algorithm, we keep the kernel size but change the stride
to 1. The resultant feature map will be the same size as the previous level
feature map. Then, the Euclidean distance map of the feature map is
calculated, while the cells with a weight value of 0 are set to solid.

Once the Euclidean distance map is available, we can start the
coarsening and numbering with the cell of the largest distance in each
microporosity region, and repeat searching neighboring cells till no
more voxels can be coarsened. Finally, the computational grids of the
microporosity under the combination of transition-layer module and
outward-coarsening module are shown in Fig. 4B. It can be seen that the
second-level coarsening grids will locate in the center of each micro-
porosity region, and the numbering of the computational grids is
outward.

As shown in Fig. 4A and 4B, the majority of the computational grids,
as the microporosity voxels, locate in the vicinity of void-microporosity
and solid-microporosity interfaces. To reduce the number of these grids,

we develop the interface-coarsening module. In addition to the kernel
used in the basic coarsening algorithm, we design three more kernels
with the sizesof 2 x 2 x 1,2 x 1 x 2,and 1 x 2 x 2 along the x, y, and z
directions, respectively. Meanwhile, the corresponding strips are the
same size as the kernels. After the basic coarsening algorithm is finished,
for the input binary image, we reset the weight values of the interface
voxels to 1 and the remainder to 0. Through three independent convo-
lution operations with the above three kernels, like in the basic algo-
rithm, we can coarsen and number the interface voxels. Fig. 4C shows
the computational grids of the microporosity under the combination of
transition-layer module, outward-coarsening module, and interface-
coarsening module. Notice that in 2D the used kernels are 2 x 1 and
1 x 2 along the x and y direction, respectively. It is seen that most of the
interface voxels are coarsened into the grids with the size of 2 x 1 voxels,
because the convolution operation with the kernel of 2 x 1 is first
conducted.

2.3. Fusion of the pore network and microporosity grids

To get the computation mesh for a hybrid model solver, the final step
is to fuse the pore network of macropores and the computational grids of
microporosity. As described in Section 2.1 and 2.2, a rigorous

B 4
Vé
A
2 —]
1 an ]
3 M
= -
N |
[ 1/
5 i i L7
|
6 J ]

Fig. 5. Schematic of the fusion of the pore network of macropores and the computational grids of microporosity. (A) Watersheds voxels, microporosity grids, and
their connections. (B) The final computational mesh which composes the pore network and the microporosity grids.
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numbering system for both pore network and microporosity grids has
been employed. As shown in Fig. 5, the pore bodies and their associated
watershed voxels are numbered in the same way. On the other hand, in
the basic coarsening algorithm and the three submodules, each
computational grid of microporosity and its associated microporosity
voxels are always linked, and numbered in the same way. Moreover, we
first number pore bodies of the pore network, then the computational
grids of microporosity. So, once the pore-network extraction and the
coarsening of microporosity voxels are done, we can loop through all the
numbered voxels, and obtain the connectivity map between pore bodies
and microporosity grids.

We end up with a brief introduction to the data structure used in
computational meshes. Basically, the data of a computational mesh are
stored in two files. One file is used to store the information on pore
bodies and microporosity grids, which includes centroid, volume,
inscribed radius, and surface area of each pore body, and centroid,
porosity, dimensions of each microporosity grid. The other file is used to
store the information on pore throats and faces of microporosity grids,
which includes the numbers of the two connected pore bodies, inscribed
radius, area, perimeter, and length of each pore throat, and the numbers
of the two connected grids (or a pair of pore body and grid), centroid,
dimensions, unit normal of each grid face.

For pore throats, we store inscribed radius, area, and perimeter. For
microporosity grids, we store the center location, length-width-height,
and volume. In the connectivity map, we store the face center, normal,
face dimensions, and area. This information is needed in the physical
models.

3. Physical models and their numerical implementation

To thoroughly investigate the impact of grid coarsening in micro-
porosity on the numerical modeling of flow and transport, in this work,
we implement three physical models (Zhang et al., 2019), namely,
incompressible single-phase flow, transient compressible single-phase
flow, and transient solute transport. Moreover, we consider isothermal
cases.

3.1. Incompressible single-phase flow

We consider an incompressible single-phase flow in multiscale dig-
ital rocks. In the framework of a pore-network-continuum hybrid model,
the flow in macropores is discretized by a pore-network model as:

;

S Ty(pi—p) =0 M
where i is the pore body index, j is the index of neighboring pore body or
microporosity grid, N; is the full coordination number of pore body i, p is
the pressure, Tj; is the transmissibility, and we neglect the gravitational
force. For a pair of pore bodies, we assume all the viscous resistances are
lumped into the pore throat; then, Tj is given by:

7R},

T, = 2
=Sl @

where Rj is the equivalent radius of pore throat ij with respect to the
pore-throat cross-sectional area, l; is the pore-throat length, u is the
dynamic viscosity.

The flow in microporosity is assumed to be described by the Darcy’s
law, resulting in the following conservation equation:

k
Voq:VO(fl;Vp):O 3)
where q is the Darcy velocity. The control volume method is used in

microporosity, associated with a Two-Point Flux Approximation (TPFA)
scheme (Karimi-Fard et al., 2004; Aarnes et al., 2007). This gives rise to
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a similar form of discretized conservation equation as equation (1).
Moreover, as illustrated in Fig. 6b, for a pair of microporosity grids, Tj is
given by the harmonic average of the two transmissibilities:

Ajk;

a;a; .
=—" witha; =—"n; e f;,a; =—'n, of; (€]

P4+ a; ud; ud;

where q; is the transmissibility of grid i (or CV}), g; is the trans-
missibility of grid j, A; is the interface area between two control volumes,
k; is the intrinsic permeability of grid i, d; is the distance between the
centroid of the interface and the centroid of grid i, n; is the unit vector
normal to the interface inside grid i, and f; is the unit vector along the
direction of the line joining the centroid of grid i to the centroid of the
interface.

At the interfaces of macropores and microporosity, we impose the
conditions of flux and pressure continuities. As illustrated in Fig. 6C, for
a pair of pore body and microporosity grid, Tj is given by the harmonic
average of the two transmissibilities as (Karimi-Fard et al., 2004):

. R} Ajk;
Ty =44 witha, = 25 q, = M o, ®
a +a 8ul; ud;

where q; is the transmissibility of pore body i, g; is the trans-
missibility of microporosity grid j, R; is the equivalent radius with
respect to the pore-body volume, ; is the half pore-body length assumed
to be equal to R;, A; is the interface area between pore body and
microporosity grid, k; is the intrinsic permeability of grid j, and d; is the
distance between the centroid of the interface and the centroid of grid j,
n; is the unit vector normal to the interface inside grid j, and f; is the unit
vector along the direction of the line joining the centroid of grid j to the
centroid of the interface.

Finally, all the discretized conservation equations can be assembled,
yielding a coupled global system for solving pressure:

PNM transmissibility

coupling of PNM and Darcy | | ppxm | [b]
coupling of Darcy and PNM -

Darcy transmissibility Pbracy

(6)

3.2. Transient compressible single-phase flow

In the second physical model, we consider a transient compressible
single-phase flow in multiscale digital rocks, to simulate gas production.
The flow in macropores is discretized by a pore-network model and the
backward Euler method as:

pf ar— /7: _ 1+AL (+Ar 1+A1 (+Ar
A p, max(Qij ,O) Z Y min (Q 0) )
where V; is the volume of pore body i, p is the gas density, Q; is the

volumetric flow rate given by the Hagen-Poiseuille equation as Q; =
Tj <pi 7pj), t is the current time, and At is the time step. We use the

upwind gas density to calculate mass flow rates inward and outward the
pore body. Without loss of generality, we assume the idealized gas law
which relates density to pressure as p = pRT where R is the universal gas
constant and T is the temperature. Then, equation (7) can be cast into:

Z pr+AtmaX( <p(+Ar
1+Al> ) Z pz+A1mm< <pz+Ar _ pjf_+Az>70> (8)

where gas pressure at the new time is the only unknown variable, and
the transmissibility is the same as in equation (2).

With the assumption of idealized gas law, the mass conservation in
microporosity is given as:

(—pfw) -0 ©)
u

il & —P, _
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QDarcy —_
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Fig. 6. (A) Schematic of the interface coupling between macropores and microporosity. (B) Geometrical representation of two adjacent control volumes and the
definition of different parameters involved in transmissibilities in microporosity. (C) Geometrical representation between a macropore and microporosity.

where ¢ is the porosity. We use the finite volume method and the
backward Euler method to discretize the equation. The interface con-
dition and treatment are the same as those in equation (5). Moreover, it
is worth noting that the unknown variable p*+A! will go into the coeffi-
cient matrix (refer to equation (6)), yielding a nonlinear system of
algebraic equations for solving pressure.

3.3. Transient solute transport

In the last physical model, we consider passive transport of a dilute
solute in water. We neglect dispersion in both macropores and micro-
porosity, due to small Péclet number values under consideration. In the
modeling, incompressible water flow is solved by the model presented in
Section 3.1, which provides the flux field to solute transport. Solute
transport in macropores is discretized by a pore-network model and the
backward Euler method as:
citar — N yia N yiar
V[# [ jZIC,f* ’max(Q,_v/-,O) - E:FIC;+ ’mln(Q,;/-,O)

N;
_ Fi/’ (Ct_+At _ C;+A1>

j=1 i

(10)

where C; is the solute molar concentration in pore body i, Q; is the flux

from the steady-state single-phase flow simulation, I'; denotes the
diffusive transmissibility for solute diffusion. For a pair of pore bodies,
Iy is approximated by:

 AyDy

L I
ij

1D

where Ay is the cross-sectional area of pore throat ij, D;; is the molecular
diffusivity.
The mass conservation of solute in microporosity is given as:

Ea—f+q¢VC—Vo(DVC):O (13)

which is discretized by the finite volume method and the backward
Euler method. For a pair of microporosity grids, I'; is given by the
harmonic average of the two diffusive transmissibilities:

3 D¢
i/ ij

n; .f”aj =

of, 14
a+q : I_n].] a4

where D is the effective molecular diffusivity in microporosity grid i.
The resultant discretized equation is similar to equation (10) where V; is
replaced with Vie;.
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At the interfaces of macropores and microporosity, we impose the
conditions of solute flux (both advective and diffusive ones) and con-
centration continuities. For a pair of pore body and microporosity grid,
similar to the calculation of Tj in equation (5), I'; is given by:

A:D: AjD; A:D: AjD‘.’
ili of iJi J
A et A2

Iy =( n; e f;) (15)

where A; is the equivalent cross-sectional area as rcRiz, D; is the molecular
diffusivity, and D]? is the effective diffusivity in microporosity grid j.
Notice that D; is equal to Dy in equation (11) so long as dispersion in
macropores is negligible. Finally, notice that the advective flux Q; will
go into the coefficient matrix (refer to equation (6)), yielding a linear
system of algebraic equations for solving concentration.

4. Results and discussion

Two multiscale digital rocks with different complexities of porous
structures have been used in this work, namely, a synthesized multiscale
Berea sandstone and a real Estaillades carbonate rock. Their numerical
results of flow and transport are presented separately.

4.1. Synthesized multiscale digital rock

4.1.1. Computational meshes

A digital rock of Berea sandstone from the Imperial College Open
Source library is used. It has the size of 400° voxels with the resolution of
5.345 um. To reduce computational efforts, we extracted a 200 sub-
volume from the image as our study domain. As shown in Fig. 7A, the
white and blue voxels are solid and void spaces, respectively. The
porosity and permeability of the subvolume are 19.8 % and 0.8 Darcy,
respectively, which are close to those (19.6 % and 1.2 Darcy) of the
original image. To synthesize a multiscale digital rock, we first gener-
ated the watersheds of solid and void spaces, and then randomly filled
25 % of solid watersheds and 25 % of void watersheds by microporosity,
corresponding to a ratio of grain-filling to pore-filling of 1. The final
ternary image is shown in Fig. 7B, where the blue and grey are macro-
pores and microporosity, respectively. The numbers of their voxels are
around 1.22 million and 1.9 million respectively. For simplicity,
microporosity here is assumed to be homogeneous and isotropic with
porosity of 31 %. The total porosity of the whole multiscale digital rock
is around 22 %.

With a maximum of three-level coarsening, three types of micropo-
rosity grids were generated by the developed algorithm in Section 2,
which were labeled as CG1, CG2, and CG3. CGO consisting of original
microporosity voxels was set as the reference to evaluate the perfor-
mance of CG1, CG2, and CG3. CG1 was generated by the basic coars-
ening algorithm with a kernel size of 2. CG2 has the highest mesh
quality, which was generated by the basic coarsening algorithm together
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with the transition-layer module and the outward-coarsening module.
CG3 was generated by the basic coarsening algorithm together with the
transition-layer module, the outward-coarsening module, and the
interface-coarsening module as shown in Fig. 7C. Moreover, to further
reduce the number of grids in the vicinity of the interfaces between
macropores and microporosity, we deactivate erosion operation in the
first level coarsening. In other words, the maximum grid size on the
interfaces is 23 voxels as shown in Fig. 7D. Therefore, GC3 should have
higher mesh quality than GC1. Table 1 gives the details of the four
computational meshes, which will be used in the modeling of flow and
transport.

4.1.2. Absolute permeability

For an incompressible single-phase flow, we impose the inlet and
outlet pressure boundary conditions along the Z direction and the no-
flux boundary condition for the remainder. The pressure difference be-
tween the inlet and outlet is set to 100 Pa. Notice that the inlet and outlet
can include both macropores and microporosity grids, depending on the
porous structures under study. The resultant system of linear algebraic
equations for pressures in both macropores and microporosity are solved
by the open source library, Eigen (Guennebaud G, Jacob B, et al., 2010).
Three microporosity permeabilities of 5 mD, 50 mD, and 500 mD have
been used in the simulations, and the corresponding absolute perme-
abilities of the multiscale rock are calculated by the Darcy equation.
With CGO microporosity grids, the absolute permeabilities of 229 mD,
297 mD, and 737 mD for the artificial sample are obtained for micro-
porosity permeabilities of 5 mD, 50 mD, and 500 mD, respectively.
Because half of the microporosity in the synthesized multiscale rock is
the pore-filling type, the absolute permeabilities are smaller than that (i.
e., 800 mD) of the original Berea rock.

To evaluate the impact of coarsening microporosity on the prediction
of permeability, we calculate the relative errors (%) for microporosity
grids CGi d = 1,2,3) by  REggi (%) = 100 x
(KCGO — KCGi)/(KCGO — KPNM): where Kpnm is the permeability (219 mD)
of the pore-network of macropores. As shown in Fig. 8, the absolute

Table 1

The details of CGO, CG1, CG2, and CG3 microporosity grids.
Grid type CGO CG1 CG2 CG3
macropores 468
8x8x8 - 1003 40 98
4x4x4 - 9520 8350 10,377
2x2x2 - 60,341 93,009 111,405
2x2x1 - - - 24,945
2x1x2 - - - 10,964
1x2x2 - - - 6242
Ix1x1 1,901,511 295,967 602,559 127,363
In total 1,901,979 367,299 704,426 291,862
Reduction of grids 0% 80.7 % 63 % 84.7 %
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Fig. 7. (A) 3D binary image of Berea sandstone (200° voxels) in which the white represents non-porous solid, and the blue represents void spaces. (B) The syn-
thesized multiscale Berea digital rock in which 25% of solid and 25% of void spaces are filled with microporosity in grey color. (C) The computational mesh with CG3
coarsened microporosity grids. (D) A 2D zoom-in of microporosity grids. (For interpretation of the references to color in this figure legend, the reader is referred to

the web version of this article.)
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Fig. 8. Impact of coarsening microporosity on the prediction of absolute
permeability.

permeabilities of the multiscale rock under different microporosity
permeabilities are underestimated. CG2, with the highest mesh quality,
gives rise to the smallest relative errors of around 3 %. However, it needs
the most computational efforts (see Fig. 12A). Compared to CG2, CG3
doubles the relative errors. This indicates that high-resolution interface
grids between macropores and microporosity are beneficial to numerical
accuracy. Moreover, if only the basic coarsening algorithm is used as for
CG1, the largest relative errors are seen.
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4.1.3. Compressible gas production

In the modeling of transient compressible gas flows, we set up an
initial gas pressure of 5 MPa in the domain, and its difference from the
outlet pressure (i.e., the gas production pressure) at the max Z is set to
100 Pa. The no-flux boundary condition is imposed for the remainder.
Together with the boundary conditions, the nonlinear governing equa-
tions (8), 9) are fully coupled and numerically solved by the Newton-
Raphson method. To speed up the modeling, an adaptive time-
stepping method based on the number of Newton iterations is used.
We set an initial time step of 10 s, and then adjust the value every 20
timesteps. If the number of iterations is greater than 25, the time step is
halved; If less than 15, the time step is doubled; Others remain un-
changed. The porosity and permeability of microporosity are assumed to
be 0.31 and 5 mD, respectively. We calculate the gas production of
macropores, microporosity, and full-domain, respectively, and
normalize it with the initial gas mass in the sample. When the normal-
ized gas production reaches 0.99, the simulation ends; and the final
physical time in CGO is used as the reference time.

Fig. 9A shows the gas production over time from macropores,
microporosity, and full-domain in CGO. The gas production rate of
macropores is much higher than that of microporosity, primarily due to
the lower permeability of microporosity. Moreover, the gas production
curves of macropores and microporosity behave similarly, rather than
separate from each other. This is mainly because half of the micropo-
rosity is pore-filling, which reduces the permeability of the original
Berea rock from 800 mD to 229 mD as mentioned above.

In contrast to permeability calculations, gas production is a dynamic
process and the influence of coarsening may change over time. We take
the production curves of CGO as the reference, and calculate the relative
errors for the three different coarsening schemes by REcg; (%) = 100 x
(Mcgo — Mcai) /Mcco, Where m can be the gas production of macropores,
or microporosity, or full domain. As shown in Fig. 9B, all coarsening

20—
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1 i — = Microporosity(CG2)
—~ 6_: - - - - Microporosity(CG3)
3\_0/ .
g 124
13}
o
; 8
s A
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0.0 0.2 0.4 0.6 0.8 1.0
Normalized time (-)
1.0
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= = Full-domian(CG2)
- - + - Full-domian(CG3)

Relative error (%)

0.0 0.2 04 0.6 08 1.0

Normalized time (-)

Fig. 9. (A) The dimensionless gas production over time from microporosity, macropores, and full-domain of CGO. (B-D) The relative errors of gas production for the
three coarsening schemes compared with the reference value (i.e., gas production of CGO).
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schemes underestimate the gas production of microporosity, because
coarsening deteriorates the accuracy of pressure gradients in micropo-
rosity. It is seen that CG2 presents the smallest relative errors followed
by CG3 and CG1. Moreover, as expected, they are profound at the early
stage of gas production, where pressure gradients are large. Due to the
complex flow interactions between microporosity and macropores,
coarsening also leads to the errors in macropores, but they are signifi-
cantly smaller than those of microporosity as shown in Fig. 9C. Finally,
the relative errors of the total gas production are shown in Fig. 9D. For
the case studies in this work, CG2 results in the smallest errors followed
by CG3 and CG1, which are consistent with the permeability simulations
in Section 4.1.2.

4.1.4. Transient solute transport

In the case studies of transient solute transport, a steady-state flow
field is first built, where the pressure drop along the Z direction is set to
100 Pa. Instead of the water flow rate, we vary the molecular diffusivity
of solute, to obtain different Péclet number values (i.e., Pe = gL/D where
q is the Darcy velocity, L is the domain length, and D is the molecular
diffusivity). For each mesh type, case studies under four different Pe
values (i.e., 0.1, 1, 10, 100) are conducted. For the solute transport
equations (11), 14), we impose the inlet concentration of 1 mol/m? at
the min Z, and the Neumann boundary condition of zero concentration
gradient at the max Z. Solute is initially absent in the domain. The time
step is determined by At = min(V;&;/ Q™ ,lizj /4Dj), where Q% is the fluid
outflux in either pore body i or microporosity grid i (Qin et al., 2016).
Finally, for all the simulations, we set the porosity, permeability, and
effective diffusivity coefficient of solute to 0.31, 5 mD, and 0.09,
respectively. For comparisons among different numerical results, each
numerical simulation is ceased when the outlet solute concentration
reaches 99 % of the inlet concentration.

To make numerical results more intuitive, we use the inlet concen-
tration to define the dimensionless average outlet concentration, and the
transport time of each case is also nondimensionalized by a fixed
advection time, t = L/v, where v is the Darcy velocity. Fig. 10 shows the
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concentration distributions in CGO under different Pe values. With the
increase of Pe, the migration modal of solute changes from diffusion to
advection. Microporosity generally retards solute transport due to its
much lower transmissibility. If we treat microporosity as solid phase in
the image segmentation, as shown in Fig. 11A, the breakthrough curve
would be steeper under Pe = 100, while the effect of microporosity on
the breakthrough curve is minor under Pe = 0.1 as expected. Fig. 11B
shows the breakthrough curves of CGO under four different Pe values. It
can be seen that the larger the Pe value is, the longer the tailing of the
breakthrough curve is. Notice that in our case studies we decrease solute
diffusivity to obtain a larger Pe value. Therefore, increasing Pe causes
less solute transport from macropores to microporosity, and then longer
tailing of the breakthrough curve. Moreover, it is found that the
breakthrough curves intersect each other. This phenomenon can be well
explained as follows. Under a large Pe value (e.g., 100 in our case
studies), solute prefers to transport in connected macropores by advec-
tion, and slowly diffuses into microporosity (refer to Fig. 10); as a result,
we would expect a high outlet concentration early and a long tailing of
the breakthrough curve. In the opposite, under a smaller Pe value (e.g.,
1.0), both advection and diffusion are important to solute transport; as a
result, we would expect high outlet concentration later, and the break-
through curve will insect with that of a large Pe value as shown in
Fig. 11B.

We take the breakthrough curve of CGO as the reference to calculate
the relative errors for the three different coarsening schemes by
REcGi (%) = 100 x (Ccgo — Ceai)/Ccco- Because the trends of relative
errors under Pe values of 1, 10, and 100 are similar, we only plot the
results of Pe = 0.1 and Pe = 100 in Fig. 11C and Fig. 11D, respectively. It
is seen that the absolute relative errors decrease over time for each type
of mesh. Under high Pe values, the relative errors are minor but nega-
tive, which means coarsening microporosity slightly overestimates the
breakthrough curve. While under low Pe values, the relative errors are
large (up to 10 % at the beginning) and positive, which means coars-
ening microporosity underestimates the breakthrough curve. As we
know, under high Pe values, microporosity retards solute transport, and

Normalized outlet concentration
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Peclet number
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Fig. 10. Distributions of solute concentration normalized by the inlet concentration in CGO under different Péclet number values, and normalized outlet concen-
tration values. From top to bottom, the Péclet number value increases from 0.1 to 100. From left to right, the normalized outlet concentration increases from 0.2

to 0.99.
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Fig. 11. (A) The breakthrough curves of CGO under four different Pe values. The horizontal axis denotes the dimensionless transport time normalized by the
advection time. The vertical axis denotes the dimensionless averaged outlet concentration normalized by the inlet concentration. (B) The breakthrough curves of CGO
under Pe = 0.1 and Pe = 100, with and without the involvement of microporosity. In the latter case, we only simulate solute transport in macropores while
microporosity is assumed to be solid. (C) and (D) The relative errors of the breakthrough curves from the three coarsened meshes compared with CGO under Pe = 0.1

and Pe = 100.

coarsening microporosity would underestimate solute transport from
macropores to microporosity. As a result, the breakthrough curve will be
overestimated and the relative errors will be negative.

4.1.5. Reduction of computation

The computational cost is an important metric to evaluate the per-
formance of coarsening microporosity. In this work, all the simulations
are performed by using a single core on a personal computer with an i7-
10700 CPU. The adapting time steps and residuals for convergence
(107®) are identical for the different coarsening schemes. The speedup
ratio is the ratio of the computation time of CGO to that of CGi. Either a
compressible flow or solute transport simulation of CGO needs several
weeks to accomplish. As shown in Fig. 12, for different case studies, the
speedup ratios are 0.9 ~ 2 times the coarsening ratios (see Table 1).

In the permeability modeling, as shown in Fig. 12A, the increase of

Pe=0.1

0 Pe=l
Pe=10

8 Pe=100,

5mD
50mD
500mD) 6

Speedup ratio

G2 G2 G2

Coarsening type Coarsening type Coarsening type

Fig. 12. Speedup ratios by coarsening microporosity under different modeling
scenarios: (A) permeability simulations, (B) compressible gas production sim-
ulations with the microporosity permeability of 5 mD, and (C) solute transport
simulations.
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microporosity permeability leads to faster convergence. The maximum
speedup ratio of CG3 can reach 12. For the compressible gas production
simulations with the microporosity permeability of 5 mD, similar to the
permeability modeling, the speedup ratios are approximately equal to
the coarsening ratios. For the solute transport simulations, the speedup
ratio can be increased at low Pe values. Overall, coarsening micropo-
rosity substantially reduces computation time and memory required for
matrix assembly and numerical iterations. Based on the case studies in
this work, the coarsening scheme of CG3 is regarded to be optimal,
which can balance accuracy and computational efficiency. Finally, it is
worth noting that the speedup ratios can be substantially increased by
optimizing the numerical implementational algorithms, which is beyond
the scope of this work.

4.2. Estaillades carbonate rock

The second test sample is an Estaillades carbonate rock, which is
composed of 99 % calcite and contains both intergranular macropores
and sub-resolution intragranular microporosity (Dautriat et al., 2011).
The raw data, including the CT images of dry, saturated, and different
capillary pressures, as well as the porosity map, and the invasion
capillary pressure (denoted by P,;) map, were published by (Wang et al.,
2022) on the Digital Rock Portal (https://www.digitalrocksportal.org/
projects/363). The porosity map was acquired by comparing the dif-
ferences between the scanning images taken under dry and saturated
conditions. The CT images under different capillary pressures were
processed by the differential imaging technology to obtain the P, map.
The introduced data is very suitable to test and study our hybrid model.
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To reduce computational efforts, we extract a subdomain of 400°
voxels from the original images (1316 x 1316 x 1087 voxels with the
voxel resolution of 6.5 pm). The macropores and microporosity of the
subdomain account for 6 % and 64.8 % of the whole voxels, respectively.
The total porosity is 24.2 %, which is basically consistent with the value
of the original image (25.4 %). We adopt the optimal coarsening scheme
of CG3 discussed in Section 4.1 to generate the computational mesh,
which contains 1817 macropores and about 4.34 million microporosity
grids as shown in Fig. 13A. The number of computational grids is
reduced by about 90 % compared to the number of original micropo-
rosity voxels. Moreover, the porosity and invasion capillary pressures of
microporosity grids are obtained by averaging the corresponding voxel
values of each grid based on the original porosity and P, maps. Fig. 13B
and Fig. 13C show the distributions of P, and porosity in the coarsened
microporosity grids.

In practice, according to the characterization level of porous struc-
tures of a multiscale digital rock, we may model its permeability in two
ways. In the first case study, we have the data of porosity and invasion
capillary pressure maps. Then, the absolute permeability of each
microporosity grid may be estimated by the Katz-Thompson equation
(Katz & Thompson, 1986), k = er? /3212, where ¢ is the porosity,  is the
tortuosity, and r is the mean pore radius. Furthermore, we assume the
same type of microporosity with a constant tortuosity of 1.75. The mean
pore size is calculated by the Young-Laplace equation, r = 2scos6/P,,
where P, is approximated by P, ¢ is the water-decane interfacial tension
of 48.3 mN/m, and @ is the static contact angle which is assumed to
0° (Wang et al., 2022).

Experimentally determining the P., map is usually costly and time-
consuming. Moreover, it has been shown that mean pore sizes (or P.)
are not correlated to microporosity porosity for Estaillades (Wang et al.,
2022). Therefore, in case 2, we may assume a unified average pore
radius for all microporosity, which can be calculated from a capillary
pressure curve. Here, we use the capillary pressure curve of the Estail-
lades core given by (Bultreys et al., 2015), and the computed average
pore radius is 3.6 pm. Together with the porosity map, we can use the
Katz-Thompson equation to estimate the absolute permeability of each
microporosity grid.

The predicted permeability of case 1 is 160.1 mD, which is in good
agreement with the reported values of 86.4 ~ 326.0 mD (Bauer et al.,
2012; Blunt et al., 2013; Alyafei & Blunt, 2016). To some extent, this
indicates the reliability of our hybrid model for a realistic multiscale
digital rock. In comparison to case 1, a much lower permeability of 41.8
mbD is predicted in case 2. This illustrates on the important role of pore-
size heterogeneity of microporosity in the permeability modeling, and it
would also apply to other flow and transport processes. To further
highlight the importance of characterizing the pore-size heterogeneity
of microporosity, Fig. 14 shows the pressure distributions in the two case
studies and their pressure difference. It is seen that the maximum
pressure difference is up to + 15 % concerning the pressure drop
throughout the domain.

Inlet boundary
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5. Conclusions and outlook

Multiscale porous structures in many geological rocks pose great
challenges for digital rock physics in both imaging and modeling as-
pects. A pore-network-continuum hybrid modeling framework is
promising to numerical studies of flow and transport in a standard
multiscale digital rock, but remains computationally expensive. In this
work, we have developed a novel and robust algorithm for coarsening
microporosity voxels of a multiscale digital rock, which includes a basic
coarsening scheme and three additional modules with various en-
hancements. Together with the pore network of macropores by image-
based extraction, we can generate efficient computational meshes for
hybrid modeling. Moreover, we have numerically implemented the
hybrid models of single-phase incompressible flow, transient
compressible flow, and transient solute transport. A number of case
studies of synthesized multiscale digital rocks and natural Estaillades
rock have been conducted, mainly to investigate the performance of the
developed microporosity coarsening algorithm and the effects of
microporosity on flow and transport in multiscale rocks. The main
conclusions drawn from our studies are:

(1) For a multiscale digital rock with half pore-filling and half grain-
filling homogeneous microporosity, a three-level coarsening of
microporosity can be achieved, and reduces the computational
mesh by more than 80 %. The coarsening has negligible impacts
on compressible gas production curves and breakthrough curves
of solute transport, and the relative errors of permeability pre-
diction are below 10 %.

Pore-filling microporosity provides the connectivity of macro-
pores, which contributes to the intrinsic permeability of a mul-
tiscale rock, particularly for highly permeable microporosity.
Microporosity retards solute transport, and influences break-
through curves considerably. It also significantly influences gas
production curves. In practice, microporosity needs to be
considered for the modeling of multiscale digital rocks.

The developed pore-network-continuum hybrid model is suitable
to a realistic multiscale digital rock. It can substantially reduce
computational efforts, while keeping the high resolution of
microporosity heterogeneities. Fine characterization of pore-size
distributions in microporosity is crucial to the prediction of rock
permeability as well as local flow fields.

(2

—

3

Finally, we comment on a few aspects regarding the present pore-
network-continuum hybrid model aided by grid coarsening. First,
compared to DPNMs, our model can capture microporosity heteroge-
neity at a higher spatial resolution, while maintaining much of the
computational efficiency. However, parallel computing may need to be
employed if additional complexities are considered, particularly for
transient case studies and extended multiphase dynamics. Second, the
current algorithm of microporosity coarsening uses a geometrically
dependent criterion to determine which voxels to coarsen. This may lead
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Fig. 13. (A) The computational grids by the optimal coarsening scheme of CG3. (B) The invasion capillary pressure and (C) porosity distributions of the compu-

tational grids.
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Fig. 14. Pressure distributions (A) in case 1 and (B) in case 2, as well as (C) the distribution of pressure difference between the two cases.

to over-coarsening of regions with strong variations of microporosity
properties (e.g., porosity and pore size), which may cause errors in the
numerical predictions. Physics-based coarsening methods may need to
be developed to address this shortcoming. Finally, the accuracy of the
present model relies on characterization of microporosity properties.
Future studies will be focused on multiscale imaging and integration of
microporosity flow parameters into a representative multiscale digital
rock.
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