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In this work, we propose a new approach to modeling multiphase flow and solute transport through a
stack of thin porous layers. Currently, numerical simulation of thin layers involves discretization across
the layer thickness. In our new approach, thin porous layers are treated as a bunch of two-dimensional
(2D) interacting continua. Macroscale balance laws are formulated in terms of thickness-averaged mate-
rial properties. A number of exchange terms are employed to account for exchanges of mass, momentum,
energy, and entropy between two neighboring layers. The entropy inequality is then exploited for obtain-
ing constitutive equations to close the problem under study. As an example, simplified governing equa-
tions are derived for a system of air-water flow and heat transfer through two thin porous layers. In
Numerical modeling comparison to previous macroscale models, our model possesses the following distinctive advantages:
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1. Introduction

Multiphase flow and solute transport through thin layers of porous
media are encountered in a number of industrial applications [1-4],
such as fuel cells, paper printers, filters, and hygiene products (e.g. dia-
pers and wipes). As an example, consider a polymer electrolyte fuel
cell (PEFC), schematically shown in Fig. 1, which has been the subject
of extensive studies over the past two decades [5,6,32,33]. A typical
PEFC unit consists of gas channels (GCs), gas diffusion layers (GDLs),
micro porous layers (MPLs), and catalyst layers (CLs) on both cathode
and anode sides. The two sides are connected by a solid polymer elec-
trolyte membrane (PEM). In automotive applications, the GDL, MPL,
and CL usually have thicknesses of 150-300 pm, 5-20 pm, and 5-
30 wm, respectively. In the in-plane directions, they can have dimen-
sions of around 50 x 50 cm. So, they are very thin layers of porous
media stacked upon each other. The operating principles of a PEFC
are as follows. Streamed humidified hydrogen (or hydrogen-rich
gas) and oxygen (or air) are delivered into the GCs on the anode and
cathode sides, respectively. At the anode side, hydrogen diffuses
through the diffusion layers and enters into the CL, where each hydro-
gen molecule splits into two electrons and two protons. The protons
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migrate into the cathode CL via the membrane. The electrons cannot
enter the membrane and have to travel through an external circuit
to the cathode side. There, electrons and oxygen diffuse into the CL
where they combine with the protons, which have diffused from the
membrane, forming water and generating heat. Though the operating
principles are quite simple, several electrochemical and physical pro-
cesses (e.g. two-phase flow, electrochemical reactions in CL and heat
transfer) occur simultaneously. These processes are crucial to the
operation of transport PEFCs [7,8]. To increase the performance and
durability as well as optimize the material properties for cost reduc-
tion, an effective and reliable numerical model for describing water
flow and heat transfer in PEFCs is needed. This is the main objective
of the present work.

To date, the modeling of flow and transport through such a thin
porous medium has been mostly performed in a three-dimensional
(3D) discretized domain with many computational cells, based on
some macroscale theories like the well-known two-phase Darcy’s
law [1,9,10]. However, there are a number of problems with this
approach. First, currently available macroscale theories are formu-
lated in terms of averaged quantities, which are defined over an
average domain known as the representative elementary volume
(REV). A major requirement of the REV is that its size must be
much larger (10-15 times) than the pore-scale dimensions, but
much smaller than the modeling domain size [11]. Obviously, this
criterion cannot be satisfied in a thin porous medium. So, the
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Nomenclature 555 interfacial area of the o phase at the bottom of the layer,
Latin symbols . (Lz) ) 5
A% Helmholtz free energy function defined by Eq. (32), (L2 t,}x in-plane part of Macroscopic stress tensor, (M/LT?)
T2) T momentum trazmsfer into the o phase through phase
oA cross-sectional area of REV, (L2) R interfaces, (L/T7)
b layer thickness, (L) T,, T, layer-layer 2mozmentum exchanges defined by Eqs. (B7)
c* mass-specific heat capacity of the o phase, (L2/T2°) and (B8), (L°/T%)
e*(p)  mass exchange term defined by Eq. (A15), (1/T) v velocity vector for bulk phase, (L/T)
el, e8  layer-layer mass exchange terms defined by Egs. (A16) W velocity vector for interfaces, (L/T)
and (A17), (LT)
E* macroscopic internal energy, (L*/T?) Greek symbols
E° planar Lagrangian strain tensor, (-) e porosity of porous medium, (-)
F solid phase motion &% volume fraction of the o phase, (-)
g gravity vector, (L/T?) P mass density, (M/L3)
G* Gibbs free energy defined by Eq. (57), (L?/T?) v thermodynamic property
h* external heat supply, (L?/T3) 114 microscopic entropy flux; macroscopic entropy flux if
Ji diffusive flux, (M/L?T) with superscript, (M/T3°)
i volume-averaged nonconvective species flux defined by ~ ®* entropy transfer into the o phase, (L*/T*°)
Eq. (B1), (M/L?>T) ®7 ®2 layer-layer entropy exchanges, (L3/T%°)
J mass transfer into species i in the o phase, (1/T) r entropy production, (L*/T*°)
]ira, B layer-layer mass exchanges for species i in the o phase, A total amount of net rate of entropy production, (M/T*°)
(L/T) 0 temperature, (°)
k layer index, (-) w mass fraction, (-)
K heat conductivity tensor, (M L2/T3°) () wettability potential defined by Eq. (61), (M/LT?)
K energy exchange coefficient between neighboring lay-  IIm material coefficient in Eq. (63), (M T°/L*)
ers, (M/T3°) 11, material coefficient in Eq. (64), (L2 T/M)
* external supply of entropy, (L?/T3°) Iy material coefficient in Eq. (65), (L T/M)
p pressure, (M/L T?)
q heat flux, (M/T?) Superscripts and subscripts
Q* energy transfer into the o phase, (L?/T%) h in-plane part
Qg, QE layer-layer energy exchanges defined by Eqs. (B11) and o B phase indicator
(B12), (L*/T?) T top of layer
¥ mass-averaged chemical reaction rate, (1/T) B bottom of layer
R* material property in Eq. (62), (1/T) l liquid phase
S saturation g gas phase
S macroscopic entropy per unit mass, (L%/T2°) s solid phase
0Sup interfacial area between two phases, (L?) r reference
oSt interfacial area of the « phase at the top of the layer, (L?)

Fig. 1. Schematic of a PEFC unit including gas channels (GCs), gas diffusion layer (GDL), micro porous layer (MPL), catalyst layer (CL) on each side; both sides are connected by
a solid polymer electrolyte membrane (PEM). Here, GDL, MPL and CL constitute a system of three thin porous layers. The z is the through-plane direction, and the x or y is the
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application of those macroscale theories to thin porous media (at
least in the through-plane direction) is questionable. Second, there
are problems with the numerical solution of those macroscale

models. For instance, one needs to discretize a thin porous medium
into computational cells, whose size may be comparable to the
pore sizes. This suggests that the methods are not applicable to

Non-isothermal multicomponent gas-water two phase flow
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such thin domains. Furthermore, the interfacial conditions be-
tween adjacent layers, needed in numerical methods, are usually
not well defined. Most importantly, 3D numerical modeling of a
number of interacting thin porous layers often requires heavy com-
putational efforts [1]. This may be the major reason why the stack-
level modeling of fuel cells has not been performed until now.
Third, the numerical modeling needs parameter values to be spec-
ified for each computational cell in the through-plane direction.
But, such a detailed and high-resolution distribution of material
properties is usually unavailable. Instead, we commonly know
effective properties averaged over the layer thickness of a thin
medium.

Therefore, in this work we propose a new approach, to model a
system of multilayers of thin porous media as 2D interacting con-
tinua. We develop the governing equations of multiphase multi-
component flow in terms of thickness-averaged material
properties. The exchange of thermodynamic properties (e.g. mass,
momentum, and energy) between adjacent layers is also described
in terms of thickness-averaged quantities. This means that in mod-
eling, we only need to discretize the layers in the planar (i.e. in-
plane) directions which will lead to a very significant reduction
of computational efforts.

For deriving the thickness-averaged macroscale governing
equations, we employ the averaging-thermodynamic approach
for multiphase flow in porous media developed by Hassanizadeh
and Gray [12-14]. In this approach, conservation laws at the
microscale are averaged over an REV to obtain macroscopic conser-
vation equations. No assumptions are made about constitutive
relationships at the microscale. Instead, constitutive assumptions
are introduced at the macroscale either by direct postulation of
desirable relations or by following the Coleman and Noll method
for the exploitation of entropy inequality [15]. Although this meth-
od is more general than other approaches [16,17], the ultimate
generality of obtained results depends on the degree of complexity
of the constitutive assumptions postulated. Furthermore, func-
tional dependence of some exchange variables must be determined
from experimental investigations.

Vertically-averaged conservation equations for multiphase flow
in a single porous layer were developed by Gray [18]. He also
developed constitutive equations for slow two-phase flow in a geo-
thermal reservoir [19] based on the Coleman and Noll method of
exploitation of the entropy inequality. Hassanizadeh [20,21]
derived the single-phase Darcy’s law and Fickian dispersion
equation for multicomponent saturated flow. By including the
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thermodynamic description of the surfaces separating phases at
the microscale, Hassanizadeh and Gray [22,23] derived an ex-
tended form of Darcy’s law for multiphase flow in porous media.
They proposed that including a dependence of the macroscale cap-
illary pressure on the fluid-fluid interfacial area may provide a
quantitative description of capillary hysteresis. Reggiani et al.
[24] formulated rigorous conservation equations for mass, momen-
tum, energy, and entropy for a watershed organized around a
channel network. In order to close the problem under study, they
developed constitutive equations for specific types of watersheds
by exploiting the second law of thermodynamics [25].

The specific goals of this research are to: (1) formulate 2D thick-
ness-averaged governing equations for multiphase multicompo-
nent flow through multilayers of thin porous media; (2) derive
constitutive relationships for a system of two thin porous layers
made of one solid and two fluid phases. The paper is organized
as follows. First, we briefly introduce the average approach used
in this work. Then, kinematics, auxiliary relations, and notation
are given. A detailed derivation of 2D balance laws is presented
along with restrictions on the exchange terms at the microscale
phase interfaces and layer-layer boundaries. Furthermore, the
macroscopic form of the second law of thermodynamics will be
introduced which serves to restrict our constitutive assumptions
for multiphase flow through thin porous layers. In Section 7, we ex-
plore the entropy inequality for a system of two layers of thin por-
ous media with solid, gas, and liquid as the three phases. The
linearization theory is used to obtain simplified constitutive equa-
tions. As a demonstration, in Section 8, the simplified governing
equations for air-water two-phase flow and heat transfer within
two thin porous layers are presented. At the end, a discussion of
the results and conclusions are provided.

2. Averaging approach

In this work, we consider the problem of multiphase multicom-
ponent flow through multilayers of thin porous media which are
assumed to be stacked with no gap between them. A schematic
representation of the through-plane cross section of the system
showing layers k — 1, k, and k + 1 is given in Fig. 2. Although in this
illustration the layers are shown to have a constant thickness, in
general their thickness may change in the planar directions. We as-
sign an averaging volume (REV) to each layer (see the lower graph
in Fig. 2). The cross-sectional area of REV, 44, is assumed to be the
same for all layers and constant in the planar directions. At any

ndary condition

SEa s

Bottom boundary condition

O A (Cross-sectional area of REV)

b (Average height of REV)

Representative elementary volume (REV)

Fig. 2. Schematic representation of three thin porous layers, which may exchange mass, momentum, and energy. Also, a typical averaging domain (REV) is shown. Note that
the layer thickness and thus the REV height can be spatially variable. Also, in reality, the layers are tightly stacked and there is no gap between them.
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given point, the height of REV, b, is equal to the layer thickness. By
moving the centroid of REV along a layer, a continuous 2D filed of
average quantities will be obtained for the layer. By averaging ther-
modynamic quantities over the proposed REV, it is obvious that in
each thin porous medium, we average out the through-plane dis-
tribution of quantities, and only the in-plane distribution is kept.
In this approach, each layer of thin porous medium is modeled as
a 2D continuum with corresponding planar balance equations
which will be derived in Section 4. Also, equations will be devel-
oped for the exchange of thermodynamic properties (mass,
momentum, energy, and entropy) between adjacent layers via
layer-layer boundaries. At the end, proper boundary conditions
need to be supplemented for the top surface of the first layer and
the bottom surface of the last layer.

3. Kinematics, auxiliary relations and notation

Macroscopic quantities are defined at the scale of an REV with
volume, 5V = béA. Throughout this work, all introduced quantities
with a phase indictor in the superscript or subscript are macro-
scale. Any averaged thermodynamic quantity (f ), only depends
on the planar directions. For instance, p” is the ratio of mass to vol-
ume of the o phase present within an REV. Because we average out
the through-plane distribution of quantities, as a consequence,
only the in-plane components of some vectorial and tensorial vari-
ables appear in the derived 2D macroscale balance laws. Through-
out this work, we use the subscript h to denote planar components
of a vector or tensor. For instance, in Cartesian coordinate, the pla-
nar velocity vector, v#, is equal to { v%, 1/;} Similarly, the planar
part of stress tensor, t7, is given as:

, | Gebyte
th: [ A e (])

yxo tyy) tyz

Also, we have the planar spatial gradient, Vj, with components {9/
0x,0/0y}.

When modeling a multiphase system, it is convenient to
employ the notions of volume fraction, &% and saturation, s*. For
a solid-gas-liquid three-phase system, we have:

s*=¢"/e a=g,l (2)
such that

#4s =1 (3a)
&=1-¢ (3b)

where the superscripts g, [, and s denote the gas, liquid, and solid
phases, respectively, and ¢ is the porosity.

Motion of solid phase is defined as a transformation F¥(Xt)
which changes the reference configuration X of the solid at time
t=0 to a new configuration x at time t, such that:

x=FX1) (4)

It is worth noting that in this work, we will employ F; to describe
the planar motion of solid phase, while its through-plane motion
is tracked by the changes in the layer thickness, b. So, the planar
Lagrangian strain tensor E° (2 x 2) is defined by:

s_ 1
)

where GRAD is the planar gradient operation with respect to the ref-
erence configuration, and I is the planar identity tensor (2 x 2).

In multiphase mechanics, the absolute velocities of phases are
not representative of any mechanical changes. Therefore, we intro-
duce the auxiliary variables, relative velocity and relative
temperature:

E' = [(GRADF;) - (GRADF;)" - 1] (5)

v =v*—v' (6a)
T =6"—0" (6b)

where v' and 0" are some reference velocity and temperature,
respectively. Throughout this paper, a comma in the superscripts
will indicate relative variables.

In formulating balance laws and the second law of thermody-
namics, it is more convenient to work with total material deriva-
tives instead of partial derivatives. The material derivative of a
function v, is introduced as:

o
Ol O ViV )

This equation may be written in terms of the material derivative

with respect to a reference velocity v'":

Div Dy | o
W_W+vh -V (8)
The planar deformation rate tensor, d* (2 x 2), is defined by:
] ol
0 =5 [Vavi+ (Vavi)'] 9)

Finally, we introduce the used convention in the layer index
throughout the work. A general thin porous layer is denoted by
layer k. When multilayers are in consideration, layer k — 1 denotes
the layer on the top of layer k, and layer k + 1 is the layer on the bot-
tom of layer k. When the layer index is omitted, it means that the
referred variables or equations hold for each layer.

4. Balance laws

For fully describing thermodynamic processes in a multiphase
flow system, two sets of macroscopic conservation equations are
necessary: one set in terms of average phase properties and the
other set in terms of average interfacial properties. The two sets
of equations are coupled via terms accounting for exchange of
thermodynamic properties between phase and interface continua
[22]. However, in order to reduce the algebra and as a first approx-
imation, we assume that phase interfaces and layer-layer bound-
aries do not store any thermodynamic properties. In this section,
we will provide macroscale balance equations for mass, momen-
tum, chemical species, energy, and entropy of the o phase in a typ-
ical layer k. Details of derivation of the macroscale general balance
law, based on the average of the general form of a microscale bal-
ance equation (Eq. (A1)), and the definition of macroscale thermo-
dynamic quantities are presented in Appendix A. The variables that
should go into Eq. (A1) in order to obtain specific balance equations
are listed in Table 1. The average of Eq. (A1) is shown to be Eq.
(A13). In the remainder of this section, we will introduce specific
REV-scale balance laws.

4.1. Mass balance

Eq. (A13) gives the REV-scale balance equation for a typical
thermodynamic property of the « phase, Y. According to Table 1,
when y=1,i=0, =0, and G=0, the macroscale mass balance
equation for the o phase in layer k can be given as:

a o A0 O Oyl NOL A0 500
a(bs 14 )k+Vh~(bs p*vi)|, — be*p*e*(p)l,
=e&"p*(e; +e)), (10)

where the vertical bar with subscript k indicates that the term pre-
ceding the bar belongs to layer k, b is the layer thickness, &* is the
volume fraction of the o phase, p* is the phase density, v# is the
2D in-plane velocity vector, e*(p) [1/T] is the mass exchange
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Table 1
Microscopic quantities used in the general transport Eq. (A1) for obtaining specific balance laws.
Quantity W i f G
Mass 1 0 0 0
Chemical component w;, Mass fraction ji, Diffusive flux 0 r;, Reaction rate
Linear momentum v, Momentum per unit mass t, Stress g, gravity 0
Energy E +1/277, Internal and kinetic energy per unit mass t-v+q, Energy flux g-v+h 0
Entropy S, Entropy per unit mass v 1 T', Rate of entropy production

between the « phase and all other phases within the layer, el [L/T] is
the o-phase mass exchange with layer k — 1, and €8 [L/T] is the
a-phase mass exchange with layer k+ 1. Note that the velocity
vector and the gradient vector have in-plane components only.

For later use, we recast Eq. (10) in terms of the material
derivative:

D;
Dt
= gapaz (ez + eg) !k

(be7p")| + %"V Vi~ be e ()
K

(11)

4.2. Species mass balance

For the sake of neatness, in what follows, we drop the layer in-
dex k at the end of each term. But, we would recover it whenever
confusion may arise. For a component i of the o phase, with mass
fraction w;, its mass conservation equation is:

8 oL A0 o O Ol yOl o 0
a(bs‘ prwf) + Vi - (be*p*viw?) — Vi - (big,)

- be*p*[wie(p) +J7]

= be p*r? 4 & p* Kco?‘ei +Jl-Tu> + (a)?‘e"j +J§x>]

where jj (M/L®T) is the volume-averaged nonconvective species
flux (defined in Appendix B) composed of two parts: the averaged
diffusive flux and the dispersion part which depends on the fluctu-
ations of both velocity and mass fraction. We note that, (j), and
(pvi), (Eq. (B1)) are the vectorial quantities with three compo-
nents in the Cartesian coordinate. For species transport inside the
layer, we only take the in-plane components because of no
through-plane gradient at the macroscale. But, the through-plane
part may affect the mass exchange of species between layers. The
mass exchange of species with adjacent layers is taken into account
by the terms inside the bracket on the r.h.s of Eq. (12). J¥ (1/T) is the
diffusive transfer of species i into the o phase in addition to
the mass transfer caused by phase change, w¥e*(p). r* (1/T) is the
mass-averaged chemical reaction rate. With the help of the continu-
ity equation (Eq. (11)), we can rewrite Eq. (12) in terms of the
material derivative:

(12)

Dyt . I
bg“p“# = Vi - (biy) — be”pJ}

— be?prr 4 %p* (Ji, +J7,) (13)

4.3. Momentum balance

The conservation equation for the momentum per unit mass, v*
(L/T), is given as:

%(bs“p“v“) + Vi - (be*p*viv*) — V- (bt]) — be” p*g” (14)
— be*p*ve*(p) + T*] = *p* Kv“ei + Tﬁ) + (vze?j + Tﬁ)]

Here, t (M/LT?) is the in-plane macroscopic stress tensor. It is a
mixed 2 x 3 tensor (defined in Appendix B). v*e*(p) accounts for
the momentum carried by the mass involved in the mass exchange,
and T* [L/T?] is the momentum exchange between the o phase and
all other phases. The momentum exchange with the upper and low-
er layers is accounted for by the terms on the r.h.s of Eq. (14). Note
that the macroscopic momentum equation (Eq. (14)) has compo-
nents in all three directions; i.e. not only the in-plane but also the
through-plane directions. Again, with the help of the continuity
equation, Eq. (14) can be reduced to the following form:

be p* Dlg‘t" V- (b)) - be*p’g — bep°T*
= (T, +T5) (15)

4.4. Energy balance

The macroscale energy balance equation reads:
0 o A0 | oo ] o2 o o 1 2
- E = o . o Ol r O E = o
at{bep{ +2(1/) + V-« be* p*v7 +2(v)
— Vi - (bt} -v*) =V} - (bq}) — be*p*g* - v* — be* p*h*
- bs“p“{ {E“ +%(v“)2} e'(p) +Q* + T -v“}
1
—ep{ [y ) Qe QT vt
(16)
Here, E* (L?/T?) is the macroscopic internal energy that includes the
average of microscale deviatoric kinetic energy, (#2/2)" [13], q% (M/
T3) is the macroscopic heat flux, h* (L?/T?) is the macroscopic exter-
nal energy source, Q* (L2/T?) is the heat exchange between the o
phase and all other phases inside the layer, Qg and Q’i (L3/T3) are
the heat exchanges with the upper and lower layers, respectively.

With the help of the continuity and momentum equations, Eq.
(16) can be reduced to the following form:

bs“p“Dg—f bt Vv — V- (bay) — bep*h" — be”p*Q*
= e'p*(Q)+ Q) (17)

where the colon sign in the second term on the Lh.s. denotes a dou-
ble inner product operation.

4.5. Entropy balance

Finally, the macroscale entropy balance equation reads:
%(ba“p“s"‘) + Vi - (be*p™viS*) — Vi - (by) — be”p*I”

— be*p*[S"e*(p) + D7)

= berp T 4 e[ (%€l + 01 ) + (57l + )] (18)



698 C.Z. Qin, S.M. Hassanizadeh [ International Journal of Heat and Mass Transfer 70 (2014) 693-708

Here, S* (1?/T%°) is the macroscale internal entropy per unit mass, i
(M/T3°) (Eq. (B13)) is the entropy flux vector, I* (L?/T3°) is the exter-
nal supply of entropy, and I'* (L?/T>°) is the rate of net production of
entropy. With the help of the continuity equation, Eq. (18) can be
rewritten in the form of material description:

be?p? 25— V- (by}) ~ be*p"F — bep"e”

= be*p*I'™ + &*p* (mg + @5) (19)

5. Restrictions on the exchange terms

As mentioned earlier, thermodynamic quantities are exchanged
among phases within a layer, as well as between adjacent layers
via layer-layer boundaries. Also as explained before, we assume
that there are no thermodynamic properties associated with phase
interfaces or layer-layer boundaries. This means that they are not
able to store any properties or sustain stress. Thus, standard micro-
scale continuity equations (i.e. conservative restrictions for the bal-
ance equations) can be applied at these interfaces, as initially
derived by Eringen [30]. The averaging of these conditions across
phase interfaces results in the following macroscale restrictions
within each and every layer (see Appendix A for details):

> be*p*e*(p) =0 (20)
> bep*[wfe’(p) 7] = 0 (21)
Zbe [ p)+T]=0 (22)
Xx:be“p“{{E“+§(zﬂ)2} e“(p)+Q“+T“.v“} =0 (23)
> be*p*[S*e*(p) + @*] =0 (24)

Here, Egs. (20)-(24) state the constraints on the exchanges of mass,
chemical species, momentum, energy, and entropy, respectively.
These restrictions can provide guidelines in selecting constitutive
relationships, so that the global conservation principles are not
violated.

The averaging of continuity conditions for the exchange of ther-
modynamic properties between layers results in the following
macroscale restrictions across two neighboring layers (for instance,
layer k and layer k + 1). For the time being, to simplify the problem,
we assume no phase change happening just at the layer-layer
boundaries. In other words, the exchanges of thermodynamic
quantities occur only inside the respective phases, which can be gi-
ven as follows:

(&P e+ (*p"€s) |y =0 (25)

)[R et IR
o)) e, o e
ol sgwrjar iy }},(

+ {s“p”—{ {E“ +%(v“)2} el +Ql + 1. v“}} »

-0 (28)
el o), -0 e

Here, Egs. (25)-(29) respectively state the macroscale conservative
restrictions between the bottom of layer k and the top of layer k + 1,
for the exchanges of mass, chemical species, momentum, energy,
and entropy.

6. The second law of thermodynamics

The second law of thermodynamics dictates the sign of net
entropy production of the system of interest. According to this
law, regardless of what the prevailing processes are, the rate of
net production of entropy of the whole system must be non-neg-
ative. For a system of N layers of thin porous media, the total rate
of net entropy production and the second law should be
written as:

A= Zst p“l"“

k=1 o

>0 (30)

Using the entropy balance (Eq. (19
law into the following form:

)), we can recast the second

N
A= ’;‘st p“r’ ;th.(bwg)
o =1 o k

N
- Zst“p“l“ 3N e (tbz + d)ﬁ)
k=1 « k=1 o k

>0 (31)

N ; xD Sx
-y
Zzbgtx xq)ac

k=1 «

In developing constitutive equations, it is convenient to employ
Helmholtz free energy function instead of internal energy. The -
phase Helmholtz free energy, A%, is defined by:

A" =E —0°$* (32)
where 6% is the macroscopic absolute temperature function, which
is always positive.

Division of the energy balance equation (Eq. (17)) by 6% sub-

tracting it from inequality (31), and subsequent use of Eq. (32)
yield the following form of entropy balance equation:

_ v st“p“ D,’;A“_’_SQD;‘@"
£ 6" \ Dt bt /|,

1 a

A= Zst p“r“

k=1 o

N

+ ZZ Ak th
33 [ )
+ ZZ (0“ be*p*h” — be* p“l“)

k=1 «

~ V- (b'/'?i)}

k

k

be* o
+ZZ p ;Za:bb D

+ ;Z T (@)
- XN:ZS“/)“ (@5 + CDE)
k=1 « k

Next, we use the definitions given by Egs. (6)-(8) and the
phase-interface constraints Eqs. (20) and (22)-(24), to
rewrite the entropy inequality in terms of reference material
derivative, relative velocity and relative temperature. After some
manipulation and algebra, we obtain the following entropy
inequality:

k

>0 (33)
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This is the macroscopic form of the second law of thermodynamics
which serves to restrict the behaviors of multiphase flow through
multilayers of thin porous media.

7. Constitutive equations for two-phase flow and heat transfer
in thin porous media layers

7.1. Assumptions for two-phase flow in a system of two thin porous
layers

The balance laws developed above are for a thin porous med-
ium which belongs to a stack of many thin layers. They account
for nonequilibrium heat and mass transfer among phases within
a layer as well as between adjacent layers. In this section, we con-
sider a system of two thin porous layers as shown in Fig. 3. At this
stage, we do not include transport of any chemical species in order
to limit the complexity of equations. We develop constitutive
equations for solid, gas, and liquid phases by exploring the second
law of thermodynamics. In particular, our focus will be on the
equations of motion of the two fluids inside each layer, and the ex-
changes of mass and energy between the two layers.

To further simplify the system under study, we make the fol-
lowing main assumptions:

e First, there are no phase changes. This means that intraphase
mass exchange terms are zero:

e(p) =0 (35)

Note that we still allow for the exchange of mass of a given phase
between two neighboring layers. But, the restrictions Eqs. (25)
and (27)-(29) apply to the layer-layer exchange terms.
o Next, we assume that local thermal equilibrium prevails among
phases within each layer. In other words, locally all phases
within a layer share the same temperature 0y:

0%l = O (36)

where 0, is the macroscopic temperature of layer k.

Due to the assumption of local thermal equilibrium, we only
need one energy equation for each layer. This is obtained by sum-
ming energy equations of all phases of a given layer:

Zbe p thh Vpv* *th (bq}) — ph
= be*prQ”
=S (Q+ Q) (37)

where h is the overall rate of heat radiation delivered to a layer with
average mass density p.

In what follows, we wish to develop constitutive equations for
the flow of gas and liquid phases in deformable porous media con-
sisting of two thin layers. The resulting equations can be readily
extended to a system of multilayers of thin porous media. For later
reference and better illustration, in Table 2, we list all relevant
macroscale balance equations and continuity conditions for the
problem under study.

7.2. Constitutive equations

As presented in Table 2, for a given system of two layers of thin
porous media with solid, gas, and liquid as the three phases, we
have a total of 24 governing equations (12 equations for each layer:
three for mass, eight for momentum, and one for energy). It is
worth noting that we exclude the through-plane motion equation
for the solid phase in each layer. In principle, these governing
equations should be solved to determine primary field variables
(i.e. primary unknowns), which in our case are:

{b,&sl,p“’V“(OC#S),Fi,@}k:172 (38)

These variables are observable and measurable. But, governing
equations also contain many variables which usually cannot be
measured directly. Those variables in our case are:

The whole system comprising two layers of thin porous media

Top boundary condition for layer 1

Layer 1

Layer 2

z, through-plane direction

X, in-plane direction

Momentum, energy and entropy exchanges

Bottom boundary condition for layer 2

Fig. 3. Schematic graph of a system of two thin porous layers. The exchange of thermodynamic properties occurs at the layer-layer boundary. Boundary conditions are

imposed at the top of the first layer and the bottom of the second layer.
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Table 2
Balance equations and jump conditions for two interacting thin porous layers.

Description

Equations (phase indicator: o = s,g,l; layer index: k=1,2)

Balance equations

Mass conservation (1 equation per phase per layer) Dj(},ﬂ[,,a)

Momentum conservation (3 equations per phase per layer be* p* Qbﬁ
expect for solid phase) Dk
Global energy conservation (1 equation per layer) 3, bt p? %

Entropy balance be* p* D;s*

Continuity conditions at the phase interfaces
Mass exchange None

Momentum exchange & p T, =0
Energy exchange

Entropy exchange 3,8t p | =0

Continuity conditions at the layer-layer boundary
Mass exchange

Momentum exchange &*p* (v“eﬁ + T?)

Energy exchange

Entropy exchange & p* (S“e{j + <D§)

— V- (bt?)], — be*p*g*|, — be* p*T*|, = &% p* (TE +T’§) .

e*preb| +e*prel], =0
. +s°‘p"(v°‘e§ +TT)| =0
s“p“{ [E“ +%(v“)2}e§ +Q5 4+ 18 -v“}
et (S“eg +(D§) )

+be“p°‘v,, V|, = &*p* (el +eb)|,

o~ bt s Vil = 3,V (b47) |, — S,bep? | = 2,bep* Q7 = 0% (Q + Q)|
%, — Vn - (bui) | — bepI”

— be*p @, = be*p*T*|, + % p” (<1>§ + (Dﬁ) )

le =

ap*(Q+ T v¥) |, =0

+e*p* {{E“

(v") ]eT+QT+TT v”}| -0

{t%7Ta7AavsxquvQ“ ei!]’ Tlo;t ]7 Qg (39)

}k:l.Z’ 1

Note that eT|2 T} , and Q are not listed here, because they are
determined by the restrictions (Egs. (25) and (27)-(29).

The quantities listed in (39) are assumed to depend on primary
variables (38) as well as their spatial derivatives. That is, we have
the following set of independent variables:

{b7 Vhb, &, vhg’sl7 vhS[*, pavvmsa E57 0a vh()}k:]l (40)

The choice of independent variables is based on the expected
behavior of the phases and our knowledge of internal state vari-
ables of the system. For example, the temperature gradient is in-
cluded because it causes heat conduction inside the system.
Absence of the velocity gradients is due to the fact that the phases
are considered to behave as nonviscous materials at the macro-
scale. It is noted that all constitutive variables should be indepen-
dent of the frame of the reference (i.e. they should be objective).
Because velocities v* are not objective, instead we make use of
the relative velocities v** as our independent variables. The same
argument is applicable to the choice of strain tensor E° instead of
the solid-phase motion, F;. We note that the dependent variables
listed in (39) are functions only of the independent variables, while
the independent variables are functions of time and space.

Compared to the 24 governing equations for the two layers, the
primary variables given in (38) comprise 30 unknowns. So, there is
a deficit of 6 equations in order to have a determinate system. This
closure problem always arises in the application of mixture theory
and averaging-thermodynamic approach to the description of mul-
tiphase flow in porous media. Following Hassanizadeh and Gray
[22], we select the following 6 extra dependent variables in order
to close the system of equations:

(&, 1, (41)

where the overdot indicates the material derivative with respect to
a reference frame. For instance:

Dib
Dt
The variables listed in (41) are assumed to be functions of indepen-

dent variables (40).
In general, each dependent variable would be postulated to de-

pend on all independent variables. But, we make two exceptions.
First, following the common practice in rational thermodynamics,

b= (42)

we use the constitutive assumptions that the entropy fluxes are so-
lely due to heat input, and the entropy external source terms are
only due to external energy sources. Thus, we would have:
o o

=%l 43)
There are also approaches where Eq. (43) are not assumed but are
derived as equilibrium results (see e.g. [31]). Second, the depen-
dence of free energies on velocities and gradients of saturation
and temperature, as well as gradient of layer thickness, can be ruled
out either because it may violate the second law of thermodynam-
ics or based on intuitive understanding of the system under consid-
eration [22]. Further, we postulate that the free energy of the «
phase in one layer is independent of the thermodynamic properties
in the other layer. Thus, simpler functional dependencies for free
energies are postulated as follows:

A%, :A“(b,p“,s“,9)|k =gl (44)
A, = (b, p,5,0,E)|, (45)

According to the axiom of admissibility, constitutive equations
must not violate balance laws and the second law of thermody-
namics given as the inequality (34). This axiom places some very
important restrictions on the constitutive equations. Restrictions
imposed by this requirement are explored by the method of Cole-
man and Noll [15]. The expansion of the second law of thermody-
namics is presented in detail in Appendix C. Taking into account
the thermodynamic definition of phase pressure (Eq. (C9)), the
residual entropy inequality becomes:

Dhe (b s b
t(ZHSp 9")

D;s! besgpg (‘)A‘g bes'p' 0A' b(1-
> De |0 o

A= Zst p“F”

k=1 o
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e)p* oA be

6 os 0 ost 0

be &P’ b(1-g)p° 0A°
*?Pg} Zm[ 7 ob

es’p”  bes*p” OA”
+Z( 0 6 ob

oS

. es*p* bss”p“aA“ bp ”
+> v [( 5o ) Vb Vnles)
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bes*p* 0A” _ , be*p*., & p'Ty,
o e T g ]
us | (€5°P"  bes*p* 9A bp* ”
+;vh K 7 - Vub+ 5 Vi(es?)
bes*p* 0A* be* e p*T}
_ Hzp 57 Vhsaz Qrp Ta per h
2

Zyas<b8 p Tot+8 P T >

oF#S oF#S
P (A A
+Zs‘lpl o { OL 91,0?+<92 01
1 1 1, 2] 0% o
Ty [ﬁ(”z ) *j(”l's) }+029,E§WE?}
fX o
z[zb“h S () } V0,
__‘ bgotpocQOt )

02‘r "
57 (st“p“Q ) >0 (46)
o 2

The inequality (46) expresses the fact that the rise in the entro-
py of the system is due to the changes in porosity, saturation, and
layer thickness, fluid flow (relative to the solid) in each layer, heat
transport, and mass exchange between layers. All of these pro-
cesses are known to vanish under equilibrium condition. We can
extract additional restrictions on constitutive functions by examin-
ing the residual inequality at equilibrium. First, the state of ther-
modynamic equilibrium is defined to be the state at which the
following variables all vanish:

arT
Zyas |:b8 p Tac p()rTw

[ S

Y
1 o

+ Zgupan

2

7.3. Equilibrium restrictions

{z,} = {(v“,vhe, é,é’,b) ]kzl 2,9”, 0> ek 1} (47)

This means that at equilibrium, inside either layer, there are no rel-
ative movements of phases, the heat conduction vanishes, and the
rates of changes of the porosity, saturation and layer thickness are
all zero. In addition, there are no temperature difference and mass
exchange between the two layers. One can readily verify that the
total entropy production rate A, given by (46), would be zero at
equilibrium. Given the fact that A is always non-negative, this
means that it reaches its minimum value at equilibrium. The neces-
sary and sufficient conditions for A to be a minimum at equilibrium
are:

oA
(). )
H < 92,0z, > H be positive semi-definite (49)

Here, the subscript e behind the parenthesis indicates that the func-
tion is evaluated at equilibrium. These two conditions place restric-
tions on constitutive functions. In particular, imposition of Eq. (48)
yields a number of equilibrium relationships, which are given
shortly. Requirement (49) imposes restrictions on the sign of mate-
rial coefficients, as shown at the end of Section 7.

As an example of how Eq. (48) leads to equilibrium restrictions,
consider the first term in inequality (46). Because ¢ is one of the
variables that vanish at equilibrium (see list (47)), imposition of
(48) results in:

=0 (50a)

(b i),

Rearranging this equation, we find that, at equilibrium, the solid
phase pressure is equal to the weighted sum of fluid phase
pressures:

®)e = [ +59%)1, ],

The difference in fluid pressures is related to the rate of change
of free energies of all phases due to a change in saturation:

oA (0A (1—¢)p® OA°

o5t P o5t e osl
where the r.h.s provides a thermodynamic definition of macro-
scopic capillary pressure, p“:

e g IA 0A® z ,BA (A -gp OA°
pr=sp ost "Pas T e osl
Note that when the layer index k is omitted, it means that the equa-
tion holds in the same form for each layer. It is worth noting that
our definition of macroscopic capillary pressure is different from
that of Hassanizadeh and Gray [22]. This is because in the present
work, we assumed that phase interfaces do not possess any thermo-
dynamic properties.

The solid phase pressure in each layer is related to the change of
free energies of all phases in the layer as a result of change in the
layer thickness:

k
(50b)

(5 —p), =s*p°—— (51)

(52)

oA° oA oA
(P)e = b(1 — &)p° -+ bes'p! =+ bespt - (53)

The fourth and fifth summation terms in inequality (46) provide
the equilibrium parts of the momentum exchange terms. For the
first layer, the equilibrium part of momentum exchange for the «
phase is given as:

A* 5
(bs“p“Tﬁ + s“p“Tﬁ“)J] = {(ss“p“ — bes*p* aa_b> Vb + bp*V(es*)

o%
—bes*p* g% Vhs“} a=g,l (54)

1

Obviously, the momentum exchange term also has a nonequilibri-
um part, which we denote by % (L/T?). Thus, the following general
equation can be given for the momentum exchange term:

(bs’ PT + e p“Tﬁi) :

0 oA” " L OA”
=— || es*p* —bes” p*—— | Vb +bp” V,(es*) — bes” p* ——Vs* + bes* p*t}; a=g,l
04 ob 0s* —

- ad
equilibrium ]

(55)

The nonequilibrium part of momentum exchange term is a function
of the full set of independent variables listed in (43). Similar formu-
lae are found for layer 2.

The eighth summation term in inequality (46) results in the fol-
lowing equality at equilibrium (note that relative velocities and
temperature differences vanish at equilibrium):

(<5, - (=45
P*/h p
The combination of terms in Eq. (56) is equal to the Gibbs free en-

ergy. Thus, Eq. (56) prescribes the following equilibrium restriction:
(61, = (G2), (57)

(56)

The ninth summation term in equality (46) leads to the result
that there is no heat flux within the layers at equilibrium:

(azl,), =0 (58)
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Finally, the last two terms in equality (46) show that the sum of
the heat exchanges of the o phase with all other phases inside the
layer and with the « phase in the neighboring layer is equal to
zero:

[(be7 Q" + 7pQ3)
[(bepQ” + &7p7q])

1L -0 (59a)

2} =0 (59b)

7.4. Linearization

To this point, the developed equations are quite general. For
some problems, additional simplifications can be obtained by con-
sidering the dynamics of the system ‘near’ equilibrium, where the
listed variables in (47) are small enough to allow a linear depen-
dence of constitutive functions.

In this subsection, we focus our attention on the flow of the two
fluids inside each layer as well as the mass and heat exchanges be-
tween the two layers. First, consider the momentum conservation
equation (15) for the first layer. Neglect inertia terms (which is a
common assumption in porous media theories) and use Egs. (C8)
and (55) to obtain:

5 OA*
— P8l =-p %Vhb

1,r o o o
07 Kp** , OA” )Vhb p p*Va(es*)
01 &s”

QO(
Vi(p*), AL

+p Th}] T;;a

AT

Qfl
LG+ pxrz} a-agl (60)

where Q% is called the wettability potential [22], defined by:

o

=" g (61)

A similar equation is obtained for the second layer. In Eq. (60),
the l.h.s is the common driving force in porous media flow. On the
r.h.s., the first two terms account for the effects of the gradients of
layer thickness and saturation on the fluid flow; the third term is
the nonequilibrium part of the momentum exchange term; the
fourth term is provided by boundary condition at the top of layer
1; and the last grouped term accounts for the possibility of flow
due to a temperature difference between two neighboring layers.

As mentioned earlier, the dissipative drag force 7} is still a func-

tion of all independent variables listed in (40). But, if the deviation
of the system from equilibrium is small, this force may be assumed
to be a linear function of the independent variable v;*:
T =-R} v —R} vy o=gl (62)
where the 2D tensors R; and R} are material coefficients that may
depend on b, &, s, p%, and 0. Note that 7 is not allowed to be linearly
dependent on the variables Vb, V¢, Vys' and E°. This is because
these variables are not necessarily zero at equilibrium, whereas 7}
must vanish at equilibrium.

Second, the entropy inequality (46) indicates that the a-phase
mass exchange between the two layers arises from the differences
in the temperature-weighted Gibbs free energies, kinetic energies
and internal energies. For the linear case under consideration here,
the following relationship is postulated:

Ol.r "
WE}

Gy G\ 11, 402 1, ,00] 02
F?pl 1{1 {<777>+9r [j(”is) *E(U?S) +WE;*
(63)

where II, is a general material coefficient which must be
determined experimentally.

Away from equilibrium, the layer thickness b may change with
time, e.g. due to swelling and shrinkage (solid phase motion). The
third summation term in inequality (46) suggests that b may be a
linear function of the term multiplying it:

oFS

b—T0,{ (1 - e)p* — b(1 - e)p* - +z<85p bgsxpaagw]
(64)

where II,, is also a material coefficient which also must be deter-
mined experimentally.

Next, consider the time rate of change of liquid saturation, §,
appearing in the second summation term of the entropy inequality
(46). A linear dependence of §' on the term multiplying it may be
assumed. Given the definition of capillary pressure (Eq. (52)), we
obtain:

$'=-Tu(p* - p' - p) (65)

where T1; is a material coefficient. This equation indicates that the
pressure difference in fluids is equal to capillary pressure but only
at equilibrium. The nonequilibrium capillary effect has been the
subject of many studies [26,27] and it is shown to be significant un-
der certain conditions.

Examination of the ninth summation term of the inequality (46)
suggests the following linear equation for the overall heat flux vec-
tor in each layer:

quh > bes* p“O(aO

oFS

)v“ =K- V40 (66)

where K is a material property. Finally, the overall heat exchange
terms for each layer can be described by the following linearized
equations:

= —Ki(0; = 0"

3 (bs“p“Q“ + s“p“Qg) (67a)

1

> (be7p"Q* + £p"Q)) | = —Ka(0, — ) (67b)

2
where K; and K, are material properties which may be functions of
p% & b, s, and 0 in both layers.

If we substitute the linearized constitutive relationships postu-
lated above back into Eq. (46), and neglect the contribution of ¢ to
the rate of entropy production, the entropy inequality becomes:

2
. b
A= §§b€p“l“ :E%(s

2

+3 g0

k=1 o k=1 ko k=1 k
2
b
+ZZZ es” ,0 v RS vbs +Z<81p1 B ) (T) !
k=1 o7s p#s k
(01 r) (Hz‘r)z
+ZZ vhe K- vh9k+ ey K+ i K, >0 (68)

Imposition of the second condition of equilibrium (Eq. (49)) results

in the following restrictions on these material coefficients:
{My, Ty, T, K}y, >0 (69a)

T
{RZ + (Rﬁ) ,K}k are positive semi-definite tensors  (69b)
=12

8. Simplified governing equations for air-water flow and heat
transfer within two thin porous layers

In this section, we develop simplified governing equations for
flow and heat transfer in a system of two thin porous layers con-
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taining air and water. The relevant equations are the mass balance
(10), the linearized momentum balance (60), and the overall en-
ergy balance (37) augmented with the linearized constitutive
equations developed in the previous section. Moreover, we make
the following assumptions that are valid for most typical porous
media applications. The solid phase is assumed to be rigid and sta-
tionary with prespecified distributions of layer thickness and
porosity. We assume incompressible fluids and slow flow. In addi-
tion, it is assumed that the driving force for mass exchange be-
tween the two layers is dominated by the difference in fluid
pressures; that is, the remaining terms on the r.h.s of Eq. (63)
may be neglected (note that the justification of this assumption
is provided in detail in Appendix D).

First, with these assumptions, the mass conservation equations
for two fluid phases are reduced to the following forms:

os* (57| — Pi_Pi) S
i + Vi - (s*v))|, = be(p7)? 1l'Im (02 o, + 58 1 (70)
s 1 pt  pr I
| + V- (s*VH], =~ I (—2——1)+—e5 71
ot 5 h ( h)}z bS(p”)z , m 62 61 p @ ) ( )

The last terms on the r.h.s. of the equations are considered to be
known and provided by the top and bottom boundary conditions,
respectively.

Then, consider the momentum balance Eq. (60). We take the
average temperature of the two layers as the reference tempera-
ture (0" = (01 + 6,)/2). Furthermore, we make the following assump-
tions: (1) neglect the fluid motion due to thermal effects; (2)
neglect the coupling effect of motion of the two fluids; and (3)
layer-thickness variations are negligible. As a result, the following
Darcy-type equations are obtained:

ol l(x ol o Q{x o pi
Vh|1:{*@{vh(l7 ) — P 8 +57Vh5 *?Tﬁa}}l (72)

ol l(x ol o Q{x o p“
Vh|2={*@{vh(17 ) — P8 +57Vh5 *FTEJ}Z (73)

where the terms T,, and T:, are considered to be provided by
boundary conditions, and K* = ¢s*/p*R* denotes the o-phase con-
ductivity tensor which is a material coefficient.

Next, neglecting the heat dissipation term, and substitution of
Eqgs. (66) and (67) into the overall energy equation (38) for each
layer, we can obtain:

> bes*p*C* o > “bes*p*C*vi - Vi| — Vi - (K- Va0)],
o 0t 1 oF#ES 1
= bes*p*h”| =K(02 - 01) + > _es*pQ, (74)
o 1 o 1
> bes*p*C* g + Y bes*p*C'vip - V| — Vi - (K- Va0)|,
o 2 oF#ES 2
= bes*p*h”| = —K(0, — 01) + > _es"p"Q;, (75)
o 2 o 2

where C* = 9E%/90 is called the mass-specific heat capacity (L?/T?°)
of the o phase (i.e. solid, air, or water phase), K is the heat conduc-
tivity of the layer, and K is the heat exchange coefficient between
the two layers. The term K(0, — 0;) accounts for the heat exchange
between the two layers. In addition, to reach the above form of
overall energy equations, we assumed that the second term on
the Lh.s. of Eq. (66) could be neglected. This term arises from the
assumption of local thermal equilibrium (see Eq. (36)). If releasing
this assumption, one would obtain the constitutive relationship of

0A%[00% + S* = 0 (refer to [22]). The last term on the r.h.s. of each
heat transport equation is provided by boundary condition.

Finally, in each layer, the air and water pressures are related by
the following constitutive equation:

pE—p' =p° - ()¢ (76)

To sum up, assuming that all material coefficients (i.e. I,
K*|,, K|, K, and Iy) are known for the two-layer system consid-
ered in this case study, we have a total of 18 governing and closure
equations (i.e. Egs. (70)-(76) and (3a)). They can be solved together
with proper boundary conditions to determine 18 primary field
variables {s*,v¥ p* 0}| (=g k=1,2).

9. Discussion and conclusions

To overcome a number of shortcomings in the traditional
Darcy-based 3D descriptions of multiphase flow and solute trans-
port through multilayers of thin porous media, we have reformu-
lated macroscale governing equations by employing the
averaging-thermodynamic approach. Based on an REV defined for
each layer, we averaged microscale transport equations over the
layer thickness. As a result, we obtained a set of 2D governing
equations along with a number of exchange terms accounting for
the exchanges of mass, momentum, and energy between two
neighboring layers.

Next, we exploited the second law of thermodynamics in order
to develop constitutive equations that account for material behav-
iors. Without losing generality, we considered a system of two thin
porous layers with solid, gas, and liquid as the three phases. In
addition, for simplification we switched off some intra-layer pro-
cesses (i.e. phase change and heat exchange among phases). For
cases that the dynamics of the system is ‘near’ equilibrium, we de-
rived the equation of fluid motion inside each layer. This equation
reduces to the classical Darcy’s law, if neglecting the coupling ef-
fect between the motions of phases, neglecting the fluid motion
due to thermal effects, and neglecting the effect of variations in
layer thickness and saturation.

According to linearization theory, the constitutive equations
for exchange terms appearing in governing equations have been
derived, which are listed in Table 3. First, the difference in tem-
perature-density-weighted phase pressures was found to be the
main driving force for the mass exchange of any phase between
two neighboring layers. The verification of this conclusion was
detailed in Appendix D. Second, the overall o-phase momentum
exchange term includes both equilibrium and nonequilibrium
parts. The nonequilibrium part was assumed to be a linear func-
tion of the phase velocity. As a result, the fluid motion equation
was obtained as shown in Eq. (60). Last, the overall z-phase en-
ergy exchange was found to be linearly proportional to the tem-
perature difference between two neighboring layers. Note that
the signs of the appeared material coefficients in these terms
were given in Eq. (69a). They may be functions of p% ¢, b, s,
and 0 in both layers. But, their precise functional forms need to
be determined experimentally.

As a demonstration of the applicability of the model, based on
several assumptions which are valid for most typical porous media
applications, we have presented the simplified governing equa-
tions for a system of air-water flow and heat transfer within two
thin porous layers. These equations can be solved to obtain fluid
saturations and temperature fields within the layers. It is worth
noting that the present results derived for a system of two layers
of thin porous media are ready to be extended into a system of N
thin porous layers, if we assume that the exchanges of mass,
momentum, and energy at a layer-layer boundary, are solely
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Table 3

Exchange terms for mass, momentum, and energy between the two thin porous layers.

Exchanged  Constitutive equation Description
quantity
Mass % yteB| _ _eo puoT| P; Py The simplified mass exchange term as shown
efpies|, = —e5psel|, = M (527 — 552 . B
frieds iriel; " ("2"1 “”") in Apepndix D
Momentum The momentum exchange term for the first
. OA* OA* layer including equilibrium part and
o LT o HoTB _ 0 A0l o o o oy o po Y o 0 0 0L
(bs p*Tj + &%p T,m) =0 (es p* — bes*p b )V,,b+bp Vh(es*) — bes*p o5t Vis* + bes*p*t} nonequilibrium part (see Eq. (62))
N non-equilibrium
equilibrium 1
The momentum exchange term for the
; r A* A* second layer
(bs“p‘Tﬁ + s“pﬁTL) ) =L (es“p“ — bes*p* a—) Vb + bp*Vj(es*) — bes* p* ?—avhs“ + bes*p*ty v
2 0 ob s N
eauilibriam non-equilibrium
qui 2
Energy The energy exchange term for the first layer

>, (baxp“Q“ + s“p“Qg) ‘1 =K(0, - 0)
>, (ba“p“Q" + s“p-%Qz) , = K- o)

The energy exchange term for the second
layer

determined by the differences in thermodynamic quantities perti-
nent to two adjacent layers.

Finally, we give some perspectives on coping with imperfect
contact between layers (mainly due to inherent roughness of
surfaces), which may exist in some engineering applications of
thin porous media [28]. Although the present model was derived
based on the assumption of no gap between layers, it is possible
and reasonable to include the effect of imperfect contact into the
material coefficient IT,, which appears in the mass exchange
term between two neighboring layers (see Eqs. (70) and (71)).
In other words, the material coefficient IT,, is a material prop-
erty of two neighboring layers as well as their boundary
morphology.
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Appendix A. Averaging of microscopic balance equation and the
associated definition of macroscopic thermodynamic quantities

At the microscopic scale, the governing equations for each
phase are the classical balance laws of continuum mechanics,
which may be stated in the following general form

%Jrvavd/)—Vi—p)‘:pG (A1)
where p is the mass density, ¥ is a typical thermodynamic property
(mass, momentum, energy, or entropy), v is the velocity vector, i is
the contact flux vector, 4 is the external supply, and G denotes the
rate of net production. Prior to averaging Eq. (A1) over the REV
for a layer (see Fig. 2), we define the following macroscopic (REV-
scale) quantities and present the necessary spatial and temporal
averaging theorems.

A.1. Macroscopic definitions

1

Volume fraction of the o phase: &*=-——

7,dv (A2)

where b is the average thickness of the REV, 6A is the cross-sectional
area of the REV, 6V is the volume of the REV, and y,, is the phase dis-
tribution function which has the value of unity inside the phase and
zero outside the phase.

Volume-averaged quantity : (f), = ﬁ / fr,dv (A3)
1%

Intrinsic volume-averaged quantity (f);,

1
~ b v (Ad)
. 1
Mass-averaged quantity f*=-——— / ,dv A5
ged q v I =mea |, P (AS)

In Egs. (A3)-(A5), f is a general thermodynamic quantity, and it is
seen that (f), = &*(f);. We note that for averaging thermodynamic
quantities, the integrand multiplied by an infinitesimal element of
integration must be an additive quantity [13]. Therefore, the
mass-averaged operation (see Eq. (A5)) is normally preferred when
defining macroscopic thermodynamic quantities.

A.2. Spatial averaging theorem

This theorem relates the average of a gradient to the gradient of
an average. When taking the average of the 3D gradient of a func-
tion over the o phase, we can get:

1
A AL

1 1
— 22 / Vv =i / IV, (A6)

Since A and 6V are independent of position, we can move the gra-
dient operator out of the integral for the first term on the r.h.s. of Eq.
(A6). Then, we get the form:

R ALY

1_/1 1
:ﬂ(a /Wymfdv> —W/vamy (A7)

Gray and Lee [29] have shown that V7, is a multidimensional
type of Dirac delta function. It can convert the last term on the
r.h.s. of Eq. (A7) to the integrals over boundaries of the « phase,
namely, 3",.,0S,. oS, and 0S;. Also, with the help of Eq. (A3),
we can obtain:
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(V)= Volb)) + Y psa

[ Sap

l B
tpe /555 fntdo (A8)

fn”"d0'+b5A/ fnldo

where n* is the normal vector at the « § interface pointing into the
B phase, n” and n® are the outward normal vectors at the top and
bottom boundaries of the porous layer, respectively. It is noted that
after averaging over the REV, the gradient operator in the first term
on the r.h.s of Eq. (A8) becomes 2D, because both layer thickness
and (f ),, depend on the planar coordinates only.

A.3. Temporal averaging theorem
This theorem relates the spatial average of a time derivative to

the derivative of a spatial average. With the help of the chain rule,
the spatial average of a time derivative in the o phase is given:

<E> “ boA / y“afdy

),
béA/ at 7)Y = psa / focdv (A9)
Gray and Lee [29] have shown that:
N
e w-Vy, (A10)

where w denotes the velocity of the of interface. Similar to the
manipulation for the spatial averaging theorem, Eq. (A9) can be re-

cast into:
of 1 9(b{f
<&>m ) ar ;ﬁbéA 55,0

1 8
—m'/ésgfw-n do

Now, we average Eq. (A1) over the REV, and multiply it by b to
get:

b(M) 4BV - (pvi)), — BT ), — bipi), = bipGl,  (AL2)

s _ T
fw-n*do boA/fw n'do

(A11)

Based on the above macroscopic definitions and the two averag-
ing theorems, we recast Eq. (A12) into the following form:

0 5 “ .
&(bs:“p“t//“) + Vi - (be*p*viy*) — V), - (biy)
— be?p*[Yre* (p) + I"] = &*p* {Ga T (l/ﬂeg +I;> n (l//aeg +I§)]

— b&*p*2*

(A13)
where
i = {<i> — (i), }, (A14)
e*(p bg“p%A; ) p(w—v) -n*do (A15)
el :m /{isgp(w—v) -n'do (A16)
el = 8“,0%514 5.55 p(w—v)-nbdo (A17)
Y= bgu;“ 72 /M + p(w — V)] -n*do (A18)
Ir :w;a(m,;; [i+p(w7v)t/~/} -n'do (A19)
= W;“M y [i +pw— v)ﬂ -nbdo (A20)

In the above equations, i is the volume-averaged contact
flux vector within the o phase, the subscript h means that
the vectorial quantity has only the in-plane components. v
and ¢ denote the fluctuations of velocity and thermodynamic
property of interest, respectively (e.g. it is defined as
W = —y*). The quantity e*(p) is the mass exchange between
the o phase and all other phases through their interfaces,
> 42054 (see Eq. (A15)), and I* accounts for the transfer of
property y to the o phase (e.g. diffusion or mechanical interac-
tion) in addition to y*e*(p). el and e8 denote the a-phase mass
exchanges with neighboring layers on the top and bottom of
the layer, respectively. Also, Ii and Iﬁ account for the transfer
of property ¥ in addition to el and e2, respectively. It is worth
noting that by averaging over the REV, we obtain the reduced
2D balance equations with the gradient operation of V. Finally,
because of the assumption that no thermodynamic properties
are stored at the phase interfaces, the exchange terms are sub-
ject to the following restriction:

S W (p) + ] =0 (A21)

Appendix B. Definition of macroscopic quantities in terms of
averages of microscopic quantities
B.1. Species mass balance

Volume-averaged nonconvective species mass flux

Jin = {0 — (pV@), }, (B1)

Diffusive flux of mass of species i into the o phase

i; + p(w — V)] - n*do (B2)

0Syp

Ji= b&“p“éA Z

Mass exchange of species i with layer k — 1 through the top of
layer k

= / iy + p(w = v)id] -n'do (83)

B F“p“bA

Mass exchange of species i with layer k + 1 through the bottom of
layer k

g 1 . w1l nB
o= apian [ B+ pw V) wdo (B4)

B.2. Momentum balance
Macroscopic stress tensor

= {0, -

Momentum exchange between the « phase and all other phases
within the layer

(pvi), | (B5)

h

d

t+pw-v n“do B6
bg&pwm /[ p(w—v)¥]-n (B6)

Momentum exchange of the o phase with layer k — 1 through the
top of layer k

T

_ 1 .n'
T“_gap—rxaA s t+p(w-Vv)V]-n'do (B7)
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Momentum exchange of the o phase with layer k + 1 through the
bottom of layer k

T - 81’0&5}4/ it+ p(w — v)¥] - ndo (B8)

B.3. Energy balance

Macroscopic heat flux
o . . 1, .
@i = { (@, + (€-9), ~ (p¥B), 5 (p¥3?), ) (89)

Energy exchange between the o phase and all other phases

1

Q= be*p*5A

{(t-\?+q)+p(w—v) (E+l —E“)} -n*do
(B10)

Energy exchange of the o phase with layer k — 1 through the top of
layer k

N

Jizal*d 0Sup

1

T —
&= E*PUOA Jost

{(t‘€'+q)+p(w—v) (E+%Z/2 —E"‘)} -n'do
(B11)

Energy exchange of the o phase with layer k + 1 through the bottom
of layer k

1 - 1 a 5

Q= Fpioh ), {(t~v+q)+p(w-v)<E+§ -E )} -n°do
(B12)

B.4. Entropy balance

Macroscopic entropy flux
Vi = {0, — (0¥5),}, (B13)
Entropy exchange between the o phase and all other phases

1
o op
= ~ w +p(w—-v)S| -n*do (B14)
be*p*oA 5A = Jisy ]

Entropy exchange of the o phase with layer k — 1 through the top of
layer k

T T
! = slpw‘/ ¥+ pw—v)S ] do (B15)

Entropy exchange of the « phase with layer k + 1 through the bot-
tom of layer k

B

_ 1 < B
(Dafm/osg[ll/-‘rp(w—v)s]n do (BlG)

Appendix C. Exploitation of the entropy inequality

The axiom of admissibility states that “the set of constitutive
equations for dependent variables must not be in contradiction
with the second law of thermodynamics and balance laws”. We ob-
tained Eq. (34) by the combination of balance equations of mass,
momentum, energy, and entropy, and the restrictions at the phase
interfaces. Therefore, when constitutive assumptions are
substituted into Eq. (34), the entropy inequality must be valid for

all possible thermodynamic processes. This requirement would
help us select proper constitutive equations. Now, we explore the
expansion form of the second law of thermodynamics by the meth-
od of Coleman and Noll [15].

First, based on the assumptions (Eqs. (35), (36) and (43)), and
with the help of the continuity conditions at the layer-layer
boundary (listed in Table 2), we recast Eq. (34) into the following
form:

2
A=) bemp T =
k=1 o k

2 o A0 o A0 o
S (e e
Z 0 Dt "7 Dt
k=1 o k

2
+;§;gt‘fj Vv

2 ~bq’ V0
PP R
Kk k=1 o

k

Ol,r

)

be o Vs
DY L BT
k

k=1 a#s

1

o AK
2 Ene) (55

0 ,r
~0, Hfz (be"p"Q’)

Sl ()| -éfér;wewzﬂ

e PN ey Sy -

o#S

CLAS

_Z”P

oFES

%ot
+ (Zz ()ll) QZ

2

ﬁB _ ool | o A% B
1+Zx 0, Q“Z stpq)“‘l stpq)“

Boundary conditions

=0
2

(1)

where the numeral subscript associated with the quantities denotes
the layer index (1 or 2), the subscript behind a vertical bar also de-
notes the layer index. Note that in obtaining the above form of en-
tropy inequality (C1), the solid phase velocity in either layer is taken
as the reference velocity.

Then, by means of chain rule, we expand the derivatives of the
free energy functions (Egs. (44) and (45)) to be:

D}A* 0A* Dis*

OA* Diip* OA* D0 OA™ Db
= p x=gl
Dt |, \9p* Dt os+ Dt 00 Dt = 0b Dt
(€2)
D,A'|  (0A° Dyp* OA° Dys' OA° D0 OA° Dyb = OA’ DiE’
Dt |, \ops Dt " os8 Dt 90 Dt ob Dt ' OF Dt

(€3)

Also, the mass conservation equation, Eq. (11), is used to evalu-
ate Dy p*/Dt to be:

szx _ pa T B p“Dﬁg“ prﬁb o o
R R R Y
(C4)
S S S S NS oS s NS
Dvp*| [P o1y by _ P DRE P Db o
Dt k‘{b(eﬁes) e Dt bt P VeV . (©)
Finally, substitution of Eqs. C2,C3C4, C5 into Eq. (C1), and after

much tedious manipulation and algebra, yield the final expanding
form of the entropy inequality as:
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A= ZZ[JF p“l"“

k=1 o

st‘p" oA" .\ | b(1-g)p é‘AS 5
ZDI[Z 0 <00+S)+ 0

o

+ ZZd“

k=1 a#s

OF’°

st [t*+ 1-¢)(p° )2%1—<1—s)pS(GRADF;,)T OA. (GRADF}) H +Z {Z 22’215 g(pS)zg—’H
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(t" +es”(p*)? oA° l>

ap*

o
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—~ Dt 0 Ose 0 os 0 st 0 apl 0 ops
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2w { { apr 0y ab}v"b o o )T g e Yy |
es*(p*)® OA™  bes*p* 9A b(p*)* oA oy bestproA* _ . bep o, &p*T,
+;v {{ o b}vhb 0 Vin(es") = =5 g Vs == T - 2

oS

_Z w(b T* E’ p?ﬁu)

Zvi5<bé’ p Tac & ,D T )

1 oS

2

0 2

+Zeﬁ|l{£1plpz A, & (pl) 9—A,+8°‘p§‘<&7i> Lanm [1(7);.5)2 B

ap3 0 opr M\, 0
0( o

Sy (—w‘) VL V40

k

Kk k=1o#s
oy 2 0 B
Eiapq)al Exap%

+ ZZ bqh vI1

k=1 o

' (zﬁ)—” z

01.r " o
o ;bs p*Q
)3

5 HZr 91 Ry
(1) ] *0 i 1piE; - 00 & pTE]

& p
2.7
Boundary conditions

In Eq. (C6), d* is the planar deformation rate tensor (Eq. (9)). Lis the
identity tensor (2 x 2). The subscript ha denotes the planar part (in
the in-plane directions) of the quantity in the « phase, while the
subscript va denotes the vertical component (in the through-plane
direction) of the quantity in the o phase. The last grouped several
terms are given by boundary conditions. They account for the en-
tropy production due to the addition and removal of heat and mass
through the top of layer 1 and the bottom of layer 2. These terms
must be greater than or equal to zero. The functional forms of
the other terms in Eq. (C6) do not depend on the boundary condi-
tions. Thus, the entropy inequality must be satisfied even when the
last grouped terms are neglected. In further discussion of the en-
tropy inequality, omission of these terms should be reasonable.

In the first three terms on the Lh.s. of Eq. (C6), the variables
D;0/Dt, d*(a # s), and d° appear linearly, because none of the con-
stitutive functions are assumed to depend on these variables. The
necessary and sufficient condition for the inequality to be valid
for all thermodynamic states is that the coefficients of the above
mentioned variables must vanish. This would lead to the following
relationships:

bes*p* (0A* L\  b(1-¢€)ps (0A° _
{; 5 <60 S) J W+S =0 a=gl
(€7)
) =—(es"p’Df, a=g,l (C8)
), = — {(1 —&)p’l - (1 — &)p* (GRADE}) - g’;‘s : (GRADFS)} k (C9)

Here, p* is the thermodynamic definition of the phase pressure,
given by:

1 2 o 2
Y(py)” 0AY %(p3)" 0A5
(0]) 3,’)] T{l Za (()2) 3[)2 B{z = (CS)
M M OA*
Pl = (0%)? (C10)

p* |y
After the above operation and dropping the boundary contribu-
tions, the entropy inequality (C6) reduces to the form of (46).

Appendix D. Simplification of mass exchange term between two
neighboring layers

According to linearization theory, we obtain the mass exchange
term as:

Ga Gat 1 ] 2 1 2 OZ.r Ol.r .
civiesh ‘H“{<F§‘?f>*ﬁ[i(”5's) S0V + i

(D1)
Substitution of Eq. (56) into Eq. (D1), and after some algebra
yield:
o AUpB| p%_p% ll 1,52_1 .5\ 2
81p1€1}] _Hm{(Gng‘ elpﬁc) +0r I:z (UZ ) 2(1}1 )
1 ‘ ‘
+ 6 -E) - (55 -5 } (02

Previous work [22] suggested that inside a phase, the derivative
of Helmholtz free energy with respect to the phase temperature is
opposite to the entropy:
0A*

= -5 D3
o (D3)
Still according to the definition of Gibbs free energy (Eq. (56)), E
(D3) can be rearranged to be:

OE
oS

=0 (D4)
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If we can approximate the differential of some quantity by the dif-
ference in the two layers and take 60 = ¢, Eq. (D4) becomes:

o (B —E) — (55 - 57) =0 (05)
Finally, if we consider slow flow in thin porous layers (for in-
stance, in PEFC application, water velocity is on the order of
10~%), the driving force coming from the difference in kinetic ener-
gies can be neglected. Also with the help of Eq. (D5), we can reduce
the mass exchange term to the following form:

socpozeB| =11 p% _ p% (DG)
1P TN 0,05 0105

It is found that the driving force for mass exchange between two
neighboring layers is dominated by the difference in temperature-
weighted fluid pressures.

References

[1] C.Y. Wang, Fundamental models for fuel cell engineering, Chem. Rev. 104
(2004) 4727-4765.

[2] H.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.J.
Ehrnsperger, R. Virgilio, Modeling unsaturated flow in absorbent swelling
porous media: Part 1. Theory, Transp. Porous Media 83 (2010) 437-464.

[3] H.G. Diersch, V. Clausnitzer, V. Myrnyy, R. Rosati, M. Schmidt, H. Beruda, B.]J.
Ehrnsperger, R. Virgilio, Modeling unsaturated flow in absorbent swelling
porous media: Part 2. Numerical simulation, Transp. Porous Media 86 (2011)
753-776.

[4] CZ. Qin, S.M. Hassanizadeh, D. Rensink, S. Fell, One-dimensional
phenomenological model for liquid water flooding in cathode gas channel of
a polymer electrolyte fuel cell, ]. Electrochem. Soc. 159 (6) (2012) B737-B745.

[5] G. Hoogers, Fuel Cell Technology Handbook, CRC Press, 2002.

[6] M.M. Mench, Fuel Cell Engines, John Wiley & Sons, 2008.

[7] C. Siegel, Review of computational heat and mass transfer modeling in
polymer-electrolyte-membrane (PEM) fuel cells, Energy 33 (2008) 1331-1352.

[8] S. Zhang, X. Yuan, J. Hin, H. Wang, K.A. Friedrich, M. Schulze, A review of
platinum-based catalyst layer degradation in proton exchange membrane fuel
cells, J. Power Sources 194 (2009) 588-600.

[9] Q. Ye, T.V. Nguyen, Three-dimensional simulation of liquid water distribution
in a PEMFC with experimentally measured capillary functions, J. Electrochem.
Soc. 154 (12) (2007) B1242-B1251.

[10] C.Z. Qin, D. Rensink, S. Fell, S.M. Hassanizadeh, Two-phase flow modeling of
the cathode side of a polymer electrolyte fuel cell, J. Power Sources 197 (2012)
136-144.

[11] J. Bear, Dynamics of Fluids in Porous Media, American Elsevier, 1972.

[12] S.M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase
systems: 1. Averaging procedure, Adv. Water Resour. 2 (1979) 131-144.

[13] S.M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase
systems: 2. Mass, momenta, energy and entropy equations, Adv. Water Resour.
2(1979) 191-203.

[14] S.M. Hassanizadeh, W.G. Gray, General conservation equations for multi-phase
systems: 3. Constitutive theory for porous media flow, Adv. Water Resour. 3
(1980) 25-40.

[15] B.D. Coleman, W. Noll, The thermodynamics of elastic materials with heat
conduction and viscosity, Arch. Ration. Mech. Anal. 13 (1963) 168-178.

[16] F. Dobran, Theory of multiphase mixtures: a thermomechanical formulation,
Int. J. Multiphase Flow 11 (1985) 1-30.

[17] L. Orgogozo, F. Golfier, M. Bues, M. Quintard, Upscaling of transport processes
in porous media with biofilms in non-equilibrium conditions, Adv. Water
Resour. 33 (2009) 585-600.

[18] W.G. Gray, Derivation of vertically averaged equations describing multiphase
flow in porous media, Water Resour. Res. 18 (6) (1982) 1705-1712.

[19] W.G. Gray, Constitutive theory for vertically averaged equations describing
steam-water flow in porous media, Water Resour. Res. 19 (6)(1983) 1501-1510.

[20] S.M. Hassanizadeh, Derivation of basic equations of mass transport in porous
media. Part 1: Macroscopic balance laws, Adv. Water Resour. 9 (1986) 196-206.

[21] S.M. Hassanizadeh, Derivation of basic equations of mass transport in porous
media. Part 2: Generalized Darcy’s law and Fick’s law, Adv. Water Resour. 9
(1986) 207-222.

[22] S.M. Hassanizadeh, W.G. Gray, Mechanics and thermodynamics of multiphase
flow in porous media including interphase boundaries, Adv. Water Resour. 13
(4) (1990) 169-186.

[23] S.M. Hassanizadeh, W.G. Gray, Toward an improved description of the physics
of two-phase flow, Adv. Water Resour. 16 (1993) 53-67.

[24] P. Reggiani, M. Sivapalan, S.M. Hassanizadeh, A unifying framework for
watershed thermodynamics: balance equations for mass, momentum, energy
and entropy, and the second law of thermodynamics, Adv. Water Resour. 22
(4) (1998) 367-398.

[25] P. Reggiani, S.M. Hassanizadeh, M. Sivapalan, W.G. Gray, A unifying framework
for watershed thermodynamics: constitutive relationships, Adv. Water Resour.
23 (1999) 15-39.

[26] S.M. Hassanizadeh, M.A. Celia, H.K. Dahle, Dynamic effect in the capillary
pressure-saturation relationship and its impacts on unsaturated flow, Vadose
Zone J. 1 (2002) 38-57.

[27] H. Dahle, M.A. Celia, S.M. Hassanizadeh, Bundle-of-tubes model for calculating
dynamic effects in the capillary-pressure-saturation relationship, Transp.
Porous Media 58 (2005) 5-22.

[28] T. Swamy, E.C. Kumbur, M.M. Mench, Characterization of interfacial structure
in PEFCs: water storage and contact resistance model, J. Electrochem. Soc. 157
(1) (2010) B77-B85.

[29] W.G. Gray, P.CY. Lee, On the theorems for local volume averaging of
multiphase systems, Int. J. Multiphase Flow 3 (1977) 333-340.

[30] A.C. Eringen, Mechanics of Continua, John Wiley & Sons, 1980.

[31] I. Miiller, A thermodynamic theory of mixtures of fluids, Arch. Ration. Mech.
Anal. 28 (1968) 1-39.

[32] Y. Wang, K.S. Chen, Through-plane water distribution in a polymer electrolyte
fuel cell: comparison of numerical prediction with neutron radiography data, J.
Electrochem. Soc. 157 (2) (2010) B1878-B1886.

[33] Y. Wang, K.S. Chen, Effect of spatially-varying GDL properties and land
compression on water distribution in PEM fuel cells, J. Electrochem. Soc. 158
(11) (2011) B1292-B1299.


http://refhub.elsevier.com/S0017-9310(13)01023-5/h0005
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0005
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0010
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0010
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0010
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0015
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0015
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0015
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0015
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0020
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0020
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0020
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0025
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0025
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0030
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0030
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0035
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0035
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0040
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0040
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0040
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0045
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0045
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0045
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0050
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0050
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0050
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0055
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0055
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0060
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0060
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0065
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0065
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0065
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0070
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0070
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0070
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0075
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0075
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0080
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0080
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0085
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0085
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0085
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0090
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0090
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0095
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0095
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0100
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0100
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0105
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0105
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0105
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0110
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0110
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0110
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0115
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0115
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0120
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0120
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0120
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0120
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0125
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0125
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0125
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0130
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0130
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0130
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0135
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0135
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0135
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0140
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0140
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0140
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0145
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0145
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0150
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0150
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0155
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0155
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0160
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0160
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0160
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0165
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0165
http://refhub.elsevier.com/S0017-9310(13)01023-5/h0165

	Multiphase flow through multilayers of thin porous media: General  balance equations and constitutive relationships for a solid–gas–liquid  three-phase system
	1 Introduction
	2 Averaging approach
	3 Kinematics, auxiliary relations and notation
	4 Balance laws
	4.1 Mass balance
	4.2 Species mass balance
	4.3 Momentum balance
	4.4 Energy balance
	4.5 Entropy balance

	5 Restrictions on the exchange terms
	6 The second law of thermodynamics
	7 Constitutive equations for two-phase flow and heat transfer in thin porous media layers
	7.1 Assumptions for two-phase flow in a system of two thin porous layers
	7.2 Constitutive equations
	7.3 Equilibrium restrictions
	7.4 Linearization

	8 Simplified governing equations for air–water flow and heat transfer within two thin porous layers
	9 Discussion and conclusions
	Acknowledgments
	Appendix A Averaging of microscopic balance equation and the associated definition of macroscopic thermodynamic quantities
	A.1 Macroscopic definitions
	A.2 Spatial averaging theorem
	A.3 Temporal averaging theorem

	Appendix B Definition of macroscopic quantities in terms of averages of microscopic quantities
	B.1 Species mass balance
	B.2 Momentum balance
	B.3 Energy balance
	B.4 Entropy balance

	Appendix C Exploitation of the entropy inequality
	Appendix D Simplification of mass exchange term between two neighboring layers
	References


