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Abstract Understanding two-phase flow in laminated sandstones is important for fluid migration control
and operational strategy determination in underground energy and hydrology engineering projects. Digital core
analysis provides unparalleled understanding of two-phase flow in complex porous media, but the integration
into field analytical workflow is obstructed by the huge computational burden and imaging limitations on a
standard rock core. To address this challenge, we propose a novel pore-scale rock-typing and upscaling
approach for fast computation of two-phase flow properties on large three-dimensional digital rock images that
contain billions of voxels. Firstly, a heterogeneous rock sample is divided into several homogeneous rock types
through data clustering of regional 3D morphological parameters, and their two-phase flow properties are
calculated from selected subsamples using in-house pore-network model. The capillary pressure and relative
permeability curves of the full digital image are then estimated through quasi-static modeling on the rock type
distribution. The excellent agreement between the upscaling results and pore-scale simulations on the full image
has verified the effectiveness of this two-phase flow upscaling strategy. With largely reduced computational
demands and clearly defined lamination heterogeneity, this approach has demonstrated good potential in
bridging the gap between pore-scale and core-scale fluid flow mechanisms. In addition, due to the laminated
structural characteristics, we also find a significant reduction in phase mobility over a range of saturations in the
relative permeability curves of this highly permeable rock sample.

Plain Language Summary Two-phase flow properties of laminated sandstones are key indexes for
production evaluation and optimization throughout the complete underground engineering process. Digital core
analysis is a robust tool to study two-phase flow in porous media. Nevertheless, its field application remains
underdeveloped because of the infeasibility of core-scale simulations. A key challenge is the massive
computational burden from direct numerical simulation on digital rock images of billions of voxels. Therefore,
an integrated pore-scale rock type classification and upscaling approach is developed in this work. The results
have shown excellent agreement between upscaling and direct computation. This has also demonstrated the
potential in inter-resolution applications, which will ultimately facilitate efficient core-scale multi-phase flow
computations.

1. Introduction

Laminated sandstone is a typical geological formation widespread across the world in oil and gas reservoirs
(Karpyn et al., 2009; Lin et al., 2021; Ringrose et al., 1993), aquifers (Masoud & Aldosari, 2020; Swanson
et al., 2006) and carbon storage fields (Hayek et al., 2009; Jackson & Krevor, 2020; Li et al., 2024). Its two-phase
flow parameters, including capillary pressure and relative permeability curves, are key properties for fluid
migration control and the optimization of field operational strategy.

However, the well-developed layering or cross-bedding structure down to millimeter or even smaller scale has
strongly aggravated the anisotropy and heterogeneity of the rock samples, and poses a great challenge for accurate
prediction of the two-phase flow parameters. Due to excellent operational and economic efficiency, digital rock
physics is extensively used to understand the flow mechanisms from pore level (Blunt et al., 2013; Qin & van
Brummelen, 2019; Tokan-Lawal et al., 2015; Zhao et al., 2018). To obtain effective flow properties, the
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simulations need to be conducted through a representative elementary volume (REV) of the sample material
(Jackson et al., 2018). Yet for multi-phase flow properties, the determination of REV could be very difficult
(Armstrong et al., 2014), especially on structures with well-developed laminae (mm) or bedding (cm) (Corbett
et al., 1992). Accurate estimation of multi-phase flow properties on such a laminated sample requires thorough
investigation on each lamination, which can hardly be achieved by contemporary simulational approaches due to
the massive computational burden (Liu et al., 2023) and the trade-off between image resolution and Field of View
(FOV) (Botha & Sheppard, 2016).

To reduce the computational burden of full-scale numerical simulation, the idea of pore-scale rock-typing and
upscaling workflow has been proposed (Ismail et al., 2013; Ruspini et al., 2021). This homogenization and
upscaling framework can be realized through three steps (Ruspini et al., 2021): (a) classify the pore-scale rock
structure into different rock types, where each rock type is considered relatively homogeneous; (b) estimate
physical properties of every rock type through selected subsamples and propagate back into the rock type dis-
tribution map; (c) calculate effective properties of the whole sample through continuum-scale model. Through
this approach, the 3D layering inside the rock sample can be clearly captured. Each layer will be considered
relatively homogeneous, thus allowing physical property estimation from a few representative subsamples.
Meanwhile, rock type distribution map can be largely coarsened before the upscaling computation to save
computing resources.

However, rock type classification is challenged by massive data points from a full 3D tomogram of up to 20003
voxels. For common image-based deep learning methods, the computational cost and memory demand of con-
volutional data processing on 3D images have heavily restricted manageable image size and window size.
Therefore, application on a full-scale scanning image of billions of voxels is currently impractical. In contrast, we
have developed an efficient rock type classification method using the Minkowski functionals (Minkowski
measures in regional computations) as the feature descriptors, which are frequently used to characterize structure
for the strong correlation with physical properties (Arns et al., 2004, 2009). For the start, regional 3D morpho-
logical features of the whole tomogram are computed utilizing integral geometry (Arns et al., 2005). With the
unique additivity of the parameters (Mecke, 2000), the huge computational burden brought by the convolutional
and voxel-based analytical process is significantly diminished by the introduction of Fast Fourier Transform
(FFT) (Jiang & Arns, 2020b). Then, Gaussian Mixture Model (GMM) for data clustering is applied on the
Minkowski measures. On this basis, representative two-phase flow properties are determined from simulations on
selected subsamples of each rock type. Finally, the capillary pressure and relative permeability curves of the full
sample are acquired through quasi-static simulations on the rock type distribution map.

This integrated pore-scale rock-typing and upscaling workflow is applied on a natural laminated sandstone, and
the upscaling results of two-phase flow properties have shown an excellent match with pore-scale simulations on
the original image. With this proven workflow, the knowledge for lamination recognition can be transferred to
low-resolution images of large FOV through supervised classification methods (Jiang & Arns, 2020a). The
physical properties of the subsamples can also be utilized for calculations on low-resolution images as well. Given
the well-characterized laminal heterogeneity, the feasibility of fluid flow predictions on low-resolution images
could be greatly enhanced, thus establishing a solid basis for the upscaling of two-phase flow properties to a
standard rock core or even bigger. In addition, we have found an immobile zone from the relative permeability
curves of this highly permeable laminated sandstone, which has offered valuable evidence to understand fluid
entrapment.

2. Methods and Samples

In this section, we first introduce the laminated sandstone used in the study. Then, the pore-scale rock-typing and
upscaling workflow is explained in detail, followed by the methods involved the workflow including the
extraction and data clustering of Minkowski measures, the calculation of two-phase flow properties and upscaling
of two-phase flow properties on the rock-type map.

2.1. Laminated Sandstone

The rock sample used in this work was collected from the Precipice sandstone of the Surate basin in Australia. The
sample is laminated with fine to medium grain layers and contains clay minerals of less than 10%. The digital
tomogram is scanned at 5.17 pm/voxel (Figure 1a), and in total 990 X 990 X 3,300 voxels are generated during
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(a)

Figure 1. 2D slices of the 3D sandstone image at different stages: (a) grayscale image, (b) segmented image and (c) calculated
rock-type field overlapping the segmented image. Bright areas are solid, dark areas are pore space, and gray areas in (a) are
clay minerals, which are segmented into solid phase in (b). Blue region in (c) is labeled as rock type 1 (RT1), and yellow
region is labeled as rock type 2 (RT2). Image resolution is 5.17 pm/voxel, and the size of the slices is 900 X 2800 voxels.

the scanning process. After getting rid of irregular margins, central 990 X 990 x 3,020 voxels are used in the
rock-typing process. Image quality enhancement and phase segmentation are performed using the “mango” image
processing software (Xray-CT; morphology; segmentation, 2,004). Here, clay minerals are treated as solid
particles, and only resolved pore space is considered to be providing effective fluid flow (Figure 1b). To compute
regional Minkowski parameters, the segmented image was scanned by an oblate window of @ = b = 4c¢ (a, b and
c refer to the half-axes of the window respectively in its three dimensions) and ¢ = 20,30,40,...,130. This
window size ratio is decided giving the horizontal lamination of the sample. Before the start of the computation,
the image was enlarged to offset the shrinkage of the Minkowski fields from regional computations. Both ends of
x and y directions are mirrored by the length of a and b.

2.2. Upscaling Workflow

This integrated workflow of pore-scale rock-typing and upscaling of relative permeability is sketched in Figure 2.
Firstly, rock type classification on the laminated sandstone is conducted. From the 3D scanning image of the rock
sample (Figure 2a), four Minkowski maps (Figure 2b) describing regional structural characteristics of the rock
sample are computed. These four measures are comprised of volume, surface area, integral of mean curvature and
integral of total curvature. The colors distributed in these maps represent different local measurement values.
Then, these maps are input for data clustering using the GMM method and the rock types are classified
(Figure 2c). Secondly, representative two-phase flow properties for each rock type are computed. Cubic sub-
samples for each rock type are selected from the rock-type field, and pore-network modeling is applied to the
subsamples for two-phase flow simulation. Figure 2d has presented pore networks extracted from the subsamples,
and Figure 2e represents the computed capillary pressure and relative permeability curves of the subsamples.
Thirdly, upscaling of two-phase flow properties of the full sample is carried out. Representative two-phase flow
properties of each rock type are assigned to the respective computational grids on the rock type field (Figure 2f),
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Figure 2. Flow chart of upscaling of two-phase flow properties (RT: rock type, P,: capillary pressure, RP: relative
permeability). (a) Grayscale image of rock sample (black is pore space). (b) Four Minkowski maps computed from the
scanning image, including volume, surface area, integral of mean curvature and integral of total curvature. The colors
represent different local measurement values. (c) Schematic plot of the rock-type field of the rock sample. Blue and yellow
represent different rock types classified from the Minkowski maps. (d) Pore networks of the subsamples of each rock type.
(e) Schematic plots of the capillary pressure and relative permeability curves of the subsamples. (f) Schematic plot of the
computational grids in the rock-type field. (g) The comparison of two-phase flow properties between upscaling and pore-
scale simulation results on the full sample.

in which the computational grids can be largely coarsened from original image voxels to achieve better
computational efficiency. Then, two-phase flow simulation on the rock-type field is conducted for capillary
pressure and relative permeability curves of the full sample. To verify the upscaling results, pore-scale simulation
of two-phase flow properties on the full sample is also conducted, and the results are compared in Figure 2g.

2.3. Pore-Scale Rock Type Classification Using Minkowski Measures

To obtain the rock type classification results, we first extract local spatial features of the porous sample. In this
study, we use a set of robust descriptive parameters called Minkowski functionals, which are comprised of
volume V(Y), surface area S(Y), integral of mean curvature M(Y) and integral of total curvature K(Y). The
definition of Minkowski functionals over a regional window has been previously described in (Arns et al., 2005;
Jiang & Arns, 2020b). For a body ¥ with a sufficiently smooth surface Y in R?, these parameters are defined as:

S(Y) = /ds,

oY
1 1 1
M) = / z(ﬁ*ﬁ) s ()
oY
1
k) = / ") e &
oY

in which r(s) and r,(s) are the maximum and minimum curvature radii at location s of Y, respectively.

To obtain Minkowski measures from digital images which is made of discretized cubic voxels, the intrinsic
volumes are related for the interpretation of the sample structure (Arns et al., 2009):
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Vo) = 1K) = (1),

Ly,

Vi(Y) = o @

V() = S,

Va(Y) = V(Y).

Here, the intrinsic volumes are regulated to be Vy = V| = V, = V3 = 1 for one voxel.

To extract the maps of regional Minkowski measures, a sliding window is arranged to scan through the segmented
tomogram of the rock sample consecutively by three dimensions, in which the voxels are filled with either solid or
pore space. For a regional structure inside the sliding window, the process starts with a minimum cubic unit of 23
voxels, and the corresponding intrinsic volumes of each possible spatial combination of solid or void phase in this
cubic unit are calculated. Considering the rotational symmetry of the cubic unit, 22 spatial combinations can be
found for binary images. Detailed information of the spatial combinations and their corresponding intrinsic
volumes can be found in (Jiang & Arns, 2020b). To obtain regional Minkowski measures in a sliding window,
each cubic unit of 23 voxels comprising the regional structure will be assigned its intrinsic volumes according to
its spatial relationship (one of the 22 possibilities). Then, the resulting histogram of intrinsic volumes can be
directly summed up and converted into Minkowski measures, which is facilitated by the additivity of Minkowski
functionals due to the involvement of integral geometry as indicated in Equation 1. For every location of the
sliding window in the tomogram, we will need to compute its regional Minkowski measures in this manner to
obtain the 3D Minkowski maps of the full image. However, the computation of these parameters on the full image
would require an enormous number of arithmetic operations and computational resources that can hardly be
achieved on personal workstations. To accelerate this process and alleviate the computational burden, FFT is
introduced into the process as allowed by the additivity of Minkowski functionals (Jiang & Arns, 2020b).

Instead of direct summation of the intrinsic volumes of all possible 2°-voxel cubic units in every window as in
previous works (Ismail et al., 2013), these 22 types of spatial combinations will be processed through FFT
convolution separately. Firstly, the intrinsic volumes of every possible 2°-voxel cubic units in the whole image are
determined. Next, the distributions of each spatial combination are extracted separately. Then, the resulting 22
distributions are calculated through FFT convolution using the same window size before they are summed up.
With the help of FFT convolution, the exponential growth of arithmetic operations brought by a regional window
can be alleviated, which is especially convenient for the application on natural samples as a big window size is
normally needed (Jiang & Arns, 2020a). More details about the involvement of FFT can be found in (Jiang &
Arns, 2020b). The classification of the feature data set is accomplished utilizing an unsupervised clustering
method called multi-variate Gaussian mixture model (Jiang & Arns, 2020b; Ribeiro, 2004) which considers all
four Minkowski measures. By labeling all the data points according to the classification results, we obtain the
spatial distribution of different rock types in the tomogram.

2.4. Computing Relative Permeability of Subsamples From the Pore-Scale

The computation of relative permeability and capillary pressure curves is realized using in-house pore-network
model (Shi et al., 2024). Comparing with other numerical simulation approaches such as Lattice Boltzmann or
finite volume method, pore-network models excel at computational efficiency, and has been verified by exper-
imental measurements of its computational reliability (Dong & Blunt, 2009; Valvatne & Blunt, 2004). As full
image two-phase flow simulations are needed for the verification of the upscaling workflow, which has
990 x 990 x 3,020 voxels, pore-network modeling is preferred in this study. To extract the pore networks, a
robust pore-network generator called PoreSpy is applied on the segmented tomogram to obtain pore locations,
inscribed and extended radii, and the connectivity map of pore bodies (Gostick, 2017). After measuring the shape
factors of pore bodies and throats, they will be represented by simplified pore elements of capillary tubes. The
cross-section of the tubes can be circular, triangular or square according to the shape factors. The capillary
pressure and relative permeability curves are simulated under quasi-static conditions. Detailed information of the
simulation process can be found in Text S2 in Supporting Information S1.
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Figure 3. X-Z slices of 3D Minkowski maps of laminated sandstone computed from regional window size of
a = b = 4c,c = 110 voxels. (a—d) are 2D slices of volume (V), surface area (S), integral of mean curvature (M) and
integral of total curvature (K), respectively.
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2.5. Computing Relative Permeability of the Full Sample Through the Rock-Type Field

After rock type classification on the full scanning image, representative subsample for each rock type is selected
for the calculation of capillary pressure and relative permeability curves. Then, the curves are fit into the van
Genuchten model (Van Genuchten, 1980), which offers a continuous relationship between pressure and hydraulic
parameters for follow-up steps. These properties estimated from representative subsamples are assigned to the
areas of their respective rock type in return. Under a given invading pressure, the saturation and hydraulic
conductance values for each computational grid can be determined from the fitted models. On the basis of the
volumetric conservation equation, these values are used in the construction of a linear equation system for the
solution of pressure distribution over the whole image, then the flow rate and relative permeability of the full
sample are estimated. Repeating this computational workflow through the drainage and imbibition process,
relative permeability and capillary pressure curves of the full sample can be obtained. More details about the
upscaling workflow can be found in Text S2 in Supporting Information S1. To verify the upscaling results, pore-
scale computation on the original structure of the full image has been carried out following the method introduced
in Section 2.4.

3. Results
3.1. Rock Type Classification

Given the distribution of grain size on different laminations, a regional window of a = b = 4¢,c = 110 voxels
was used to compute the Minkowski measures, and the 2D slices of regional Minkowski measures are shown in
Figure 3. The determination of window size have a significant influence on the classification results when using
unsupervised classification method like GMM. For samples with strongly heterogeneous particle size distribu-
tion, it may require tests on multiple sizes. One can also choose supervised classification models such as support
vector machines, through which the sensitivity on window size can be largely reduced with a small amount of
manually labeled data (Jiang et al., 2024).

We assigned two rock types for classifying this sample. The classification result is presented in Figure lc, in
which the blue region is labeled as Rock Type (RT) 1, and the yellow region is labeled as rock type 2. It can be
seen from Figure 1c that the two types have distinctive structural characteristics from each other and are quite
homogeneous within the same type. Detail operational information about the classification process can be found
in Text S1 in Supporting Information S1. To verify the classification results, we computed single-phase
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Table 1

permeability of the full image from the rock type map and compared it with

Average Permeabilities and Porosities of the Rock Types pore-scale computational results from the original image. Firstly, 13 sub-

kh

samples of 500 voxels were picked up for both rock types to compute

kV ¢

RT1 7.764 £ 1.630
RT2 1.000 + 0.107

6.176 £ 2.311 0.181 + 0.014

average permeability values. The average permeability and porosity of the
rock types are listed in Table 1. The porosities of both rock types are very

0.729 + 0.093 0.165 + 0.007  gimilar, while permeabilities are quite distinctive from each other. Then, the

Table 2

average permeability values are assigned to every data point in the region of
the respective rock type as hydraulic conductance values for fast full image computation using Darcy's law
through the rock type distribution. Other details about permeability upscaling can also be found in (Jiang
etal., 2024). The comparison between the upscaling and direct computation results is given in Table 2. We can see
that the accuracy of upscaling results is over 94%, which has proved the effectiveness of the rock type classi-
fication results and illustrated the potential of the workflow for application on a wider scale and two-phase flow
properties.

3.2. Upscaling of Relative Permeability

For the upscaling of two-phase flow properties from the rock-type field, the properties of each rock type need to
be collected. In this work, we simulated the two-phase flow process using in-house pore-network model. The
extracted pore-network models from the subsamples of both rock types are presented in Figure 4. The upper pore-
network model from RT2 has smaller pore bodies with a higher density distribution, while the lower pore-network
model from RT1 has larger pore bodies but a sparser distribution. For RT1, 65 subsamples of 500° voxels can be
extracted with an interval of 100 voxels, while 125 subsamples can be extracted for RT2. For thinly laminated
structure, available subsample size from the rock types may be smaller than a REV, especially when it comes to
two-phase flow. To ensure the accuracy of the upscaling process, the fluctuation of flow parameters from this
subsample size is recorded through the variety of subsamples and assigned to the computational grids using
random assignment or averaged values. The drainage-imbibition process is simulated for each subsample using
the intrusion percolation algorithm, and comparative 3D illustrations of fluid distribution in the subsamples from
different rock types during the simulation process are given in Figure 5. The scatter plots of relative permeability
and capillary pressure curves are obtained from the simulations and are shown in Figure 6. Figure 6a presents the
scatter plots of capillary pressure curves from 20 subsamples of RT1. We can observe good similarity between the
curves, suggesting homogeneity of the porous structure within the rock type. As the pressure increases to around
20 kPa, water saturation drops dramatically from 0.9 to 0.3, indicating a relatively uniform distribution of pore
size in RT1. Scatter plots of capillary pressure curves of RT2 (Figure 6b) have similar characteristics, but with
much higher intrusion pressure and slower saturation reduction, indicating smaller average pore throat sizes with
sparser distribution as shown in Figure 4. Scatter plots of relative permeability curves are given in Figures 6¢ and
6d. Curves of the same rock type have presented a similar trend, providing further evidence of the validity of the
rock type classification.

With representative two-phase flow properties from the subsamples, the relative permeability and capillary
pressure curves of the full sample can be efficiently computed from the rock type distribution map. The results
from pore-scale simulations on the original image and upscaling computations of different data assigning schemes
are compared in Figure 7. The two-phase flow properties from the subsamples can be randomly assigned to the
data points to keep the rock type's mild heterogeneity (random assignment method), or the whole rock type can be
assigned by the averaged results of the subsamples (average method). The data from all the subsamples of 5003
voxels are used for the above two methods (“hetall” and “homall” in Figure 7). Meanwhile, 10 subsamples for
each rock type have been selected for the same task (“het10” and “hom10” in Figure 7). Figure 7c demonstrates
the capillary pressure curves of the full sample from the drainage and imbibition simulations. The black curve is
generated from pore-scale simulations on the original segmented tomogram using PNM, and the colored curves

are generated from the upscaling method. All results from the upscaling

workflow have successfully captured the stepped feature of the drainage

Full Image Permeabilities From Direct and Upscaling Computation curve from PNM computation and followed the slow and small increase of

Scenario

& k, WP saturation on the imbibition curve. The utilization of 10 subsamples can

Direct computation

Upscaling computation

4.65(+5.68%) 1.45(-1.36%)

4.40 % already produce very good match with the PNM results, guaranteeing great
’ ’ efficiency for the computation of representative properties of each rock type.

In Figures 7a and 7b, relative permeability curves computed from the
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Figure 4. Illustration of the pore-network models of subsamples from each rock type. (a) 2D slice of the rock-type field on top
of the segmented image of the sandstone, (b) 3D illustration of the porous structure of a subsample from rock type 2, (c) the
generated pore network from (b), (d) 3D illustration of the porous structure of a subsample from rock type 1, (¢) the generated
pore network from (d).

RT1

B WP mEENP

RT2

Figure 5. 3D illustrations of the drainage process of subsamples from each rock type. (a—d) Different intrusion stages on a
subsample from RT1; (e-h) Different intrusion stages on a subsample from RT2. WP refers to the wetting phase, and NP
refers to the non-wetting phase. S,, measures the saturation of the wetting phase.
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Figure 6. Scattered plots of capillary pressure and relative permeability curves for each rock type during the drainage process:
(a—b) capillary pressure curves of 20 subsamples from RT1 and RT2, (c—d) relative permeability curves of 20 subsamples
from RT1 and RT2. K,,, represents the relative permeability of the wetting phase, and K, is the relative permeability of the
non-wetting phase.

drainage and imbibition simulations are presented. The data points from upscaling computations closely overlap
the PNM results, among which “hom10” has slightly outperformed the others. The deviation of upscaling results
from random assignment method may be caused by inadequate subsample numbers. Considering the demand in
subsamples and upscaling performance, average method is more recommended for the upscaling workflow.
However, when it comes to special cases of strongly heterogeneous layers, random assignment method is more
suitable for maintaining heterogeneity information.

Although we may need to test on more complicated and larger rock samples, the results have demonstrated the
feasibility and potential of the proposed workflow. Regarding the computational efficiency of the upscaling
method, the computational grids needed in the upscaling computation can be restricted to thousands with carefully
preserved boundaries of rock types utilizing convolutional grid coarsening method (Shi et al., 2024). Comparing
with pore-scale computation of the full sample using pore-network model, which has approximately 100,000
computational units, the computational resources and computing time required by the upscaling method are
largely reduced. Hence, this upscaling method is very promising for bridging the gap between pore-scale and
core-scale multiphase flow and building up close interaction between digital physical analysis and laboratory or
even field data. Moreover, with the coarsened rock type distribution map, it would be convenient to study dy-
namic flow problems such as preferential flow, in which the computational improvement would be increasingly
evident.

4. Discussion

Given the laminated structure of the rock sample, it is reasonable to hypothesize that the two-phase flow prop-
erties are strongly anisotropic. In this study, we focus on one scenario of vertical drainage from the bottom to the
top of the sample for a better understanding of the impact of laminations. From the relative permeability curves of
the drainage process, we can observe an immobile zone from S,, = 0.4 to 0.65 where both NP and WP's
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Figure 7. Capillary pressure and relative permeability curves of the full sample: (a) relative permeability curves from the
drainage process; (b) relative permeability curves from the imbibition process; (c) capillary pressure curves from direct PNM
computation and different upscaling workflows (het10: the properties from 10 subsamples of 5007 voxels are randomly
assigned to the data points of the respective rock type; hetall: the properties from all possible subsamples of 500° voxels are
randomly assigned to the data points of the respective rock type; hom10: the averaged properties from 10 subsamples of 500°
voxels are uniformly assigned to all the data points of the respective rock type; homall: the averaged properties from all possible
subsamples of 500° voxels are uniformly assigned to all the data points of the respective rock type).

Figure 8. Pore networks of the full image at different drainage stages. The non-wetting phase is drained vertically from the
bottom to the top of the sample. The blue regions are filled by the wetting phase, and the red regions are filled by the non-
wetting phase. S,, measures the saturation of the wetting phase.
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permeabilities are zero. The pore networks of the full image from this drainage process are plotted in Figure 8,
through which the spatial distribution of the fluids inside the rock sample is explicitly presented. The blue regions
are occupied by NP while the red regions are occupied by WP. From Figure 8a, we can see that NP is stuck at the
lower RT1 section. This is because the entry pressure of RT2 is much higher as the passages narrow down, which
can also be predicted from the permeability difference in Table 1 where the permeability of RT2 is about 10 times
smaller than RT1. Therefore, NP is stranded and gradually replaces WP from big pores to small pores, leading to a
fast and dramatic decrease of WP mobility. As the invading pressure increases, NP slowly squeezes into RT2
(Figure 8b). Once a connected pathway is established in RT2 as the invading pressure reaches the breakthrough
point, NP will be drained to the upper RT1 region (Figure 8c). Although NP has occupied a large portion of the
pore space, its mobility is held back by the limited paths in RT2. As the invading pressure continues to increase,
more paths are established for NP in RT2 (Figure 8d), finally improving the permeability of NP as shown in
Figure 7a.

After the invading pressure of primary drainage process reaches the preset maximum value, the pressure starts to
reduce to allow main imbibition. As WP is imbibed, the WP film attached to the solid grows thicker and merges
firstly at narrow throats, which traps NP in pore bodies. This entrapment is much more severe in RT2 of smaller
pore and throat size, and has blocked the fluid movement of the whole sample. Hence, the relative permeability of
the secondary imbibition process drops rapidly to O as shown in Figure 7b, and the increase of WP saturation in the
imbibition process is limited (Figure 7c) as well.

In fact, both RT1 and RT2 have very good intrinsic permeabilities, but this relatively small difference, coupled
with the laminated structure, has caused heavy fluid blockage in multi-phase flow, creating an immobile zone in
the relative permeability curves. In engineering practices such as hydrocarbon depletion, this is going to heavily
affect oil and gas recovery. On the other hand, the good match between direct computation and upscaling results
suggests that rock type classification using Minkowski functionals is quite effective in recognizing regions of
different flow patterns, which can be particularly useful in understanding preferential flows in heterogeneous
porous media and ultimately contribute to the enhancement of engineering practices and industrial applications
such as material design optimization.

5. Conclusions

Two-phase flow in porous media is an important physical process and frequently occurs in many industrial and
underground energy projects. Digital physical analysis integrating advanced microscopic imaging offers a
powerful research tool to understand the fundamentals of two-phase flow. However, current research scale is
strictly limited by the heavy computational burden of the simulational process, and can hardly be merged to field
analytical workflow considering the strong heterogeneity of rock structures. Toward this problem, an integrated
pore-scale rock-typing and upscaling workflow is proposed and has achieved fast computation of relative
permeability on a full 3D image of billions of voxels. In this workflow, Minkowski functionals are chosen to
describe regional morphological and topological characteristics of the porous structure. Fast Fourier transform is
introduced to accelerate the convolutional process for the generation of regional Minkowski maps. Then, the
regional maps are utilized for rock type recognition through multi-variant Gaussian mixture model. When pore-
scale rock-typing is accomplished, representative two-phase flow properties are computed for each rock type
from limited subsamples and used for the fast computation of relative permeability from the rock type distribution
map of the full image. The main conclusions are listed as follows:

1. Pore-scale rock-typing using Minkowski functionals enables automatic classification of different lamination.

2. Effective permeability of the full scanning image computed from upscaling workflow has reach the accuracy
of 95% comparing with pore-scale computational results.

3. Upscaling of relative permeability from the rock type classification map agrees very well with the results from
PNM computation on the full image, which shows the potential of the pore-scale rock-typing and upscaling
workflow in bridging the gap between micro-scale and core-scale multi-phase flow mechanisms.

4. An immobile zone has occurred on the relative permeability curves of the full image. The lamination of a
relatively less permeable rock type has caused strong fluid blockage and dramatic decrease of the transport
ability of the fluids.
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