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A B S T R A C T   

The rapid advancement of digital core analysis has greatly promoted the research progress of flow and transport 
in porous media. However, complex analytical process with exceeding computational load impedes the appli
cation on large data volume. Considering the strong heterogeneity of the underground porous media, the inte
gration of pore-scale information into continuum scale is widely concerned for the future development of digital 
physical analysis. For hierarchical porous structures, pore-scale rock-typing and upscaling of petrophysical 
properties is a promising solution towards the issue, and morphological and topological descriptors associating 
data clustering methods are popularly utilized. However, the size of the regional support through which the 
parameter fields are generated heavily affects the descriptive capacities of the parameters and the following 
partitioning process. We propose in this work a robust integrated pore-scale rock-typing and upscaling tech
nology for 3D porous structures which uses Minkowski functionals as the descriptive parameters. A fast- 
computational method utilising fast Fourier transform has been applied for efficient generation of the param
eter fields. A comparative study between the two different classification methods of Support Vector Machine 
(SVM) and Gaussian Mixture Model (GMM) has been conducted on two complex artificial porous systems and a 
laminated sandstone through various regional support sizes. Throughout the test, SVM has illustrated obvious 
advantage of overcoming regional support size effect even with limited labelling information. The Upscaling of 
permeability on the natural sandstone sample based on the rock type distribution has demonstrated excellent 
accuracy comparing with full scale direct computation.   

1. Introduction 

With the fast development of pore-scale imaging and computational 
technologies, digital core analysis has become the most popular toolset 
for the study of flow and transport in porous media, which happens in 
many important economic and environmental subsurface projects, such 
as geological sequestration of carbon dioxide or hydrogen, utilization of 
geothermal resources and groundwater remediation (Luo et al., 2014; 
Lysyy et al., 2022; Mascini et al., 2021; C. Qin et al., 2022; C.-Z. Qin 
et al., 2022; Sadeghnejad et al., 2021). The unparallel access to 
pore-scale details offered by digital core analysis technology allows 
explicit observations of the dynamic processes of the fluids within the 
channels. However, there is trade-off between the resolution and the 
field of view (FOV) of the computational tomograms owing to the 

constraints of contemporary micro-computed tomography capacities 
(Garum et al., 2021; Jiang and Arns, 2021; C. Qin et al., 2022; C.-Z. Qin 
et al., 2022; You et al., 2021). And with demanding computational ex
penses required by the simulations of complex fluidic movements, nu
merical simulations are normally carried out on cubic digital samples of 
a few hundred voxels in side length, which refers to the scale between 
micrometer and millimeter. Considering the heterogeneity of reservoir 
rock across different length scales, the extension of numerical im
provements to continuum-scale is widely concerned for theoretical and 
practical advancements but currently under restraints. 

The integration of explicit structural information on high resolution 
tomograms and complete FOV on low resolution tomograms can be a 
promising solution to narrow down the gap. Therefore, numerical 
analysis on multi-scale tomograms is widely concerned in the research 
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field (Jackson et al., 2022; W.S.K. Botha and P.Sheppard, 2016). But due 
to strong heterogeneity of the complex porous systems, mapping of 
numerical estimations and graphical information between different 
resolutions and the upscaling of physical properties can be very chal
lenging. Simple averaging over a large volume that contains distinct 
variations can hardly fulfill the task. A more scientific approach would 
be recognizing regions of similar properties and extracting their repre
sentative values for the coupling to the continuum. This idea of 
upscaling with homogenization as a common choice has been applied in 
various fields, such as reservoir engineering (Aguilar-Madera et al., 
2019), hydrogeology (Zhou and Meschke, 2018), geophysics (Amanbek 
et al., 2019) and material science (Iliev et al., 2020). Pore-scale rock type 
classification and upscaling method is hence introduced for the 
connection between pore to continuum scale (Jiang and Arns, 2021; 
Ruspini et al., 2021; Wang and Sun, 2021), which could preserve most 
information during transport and reduce the computational expenses of 
numerical simulations dramatically. Nevertheless, successful applica
tion of the strategy requires deep analytical work of the microstructure 
inside the target sample. 

Different from petrophysical rock-typing in flow unit interpretation 
partitioning directly on flow characteristics (Ji et al., 2022), 
image-based rock type classification studies the fundamental pore-scale 
information on a voxel-by-voxel basis throughout the computational 
tomogram. For a full high-resolution scan of a rock sample, the 3D 
digital image will be comprised of billions of voxels, which brings heavy 
computational burden for following analytical work (Han et al., 2022). 
Careful designing of rock-typing strategies is required for both accuracy 
and computational efficiency, and furthermore, assisting the correlative 
research between structural characteristics and fluid flow behaviors. A 
combination of porous structure feature extraction and data clustering is 
a competitive toolset to achieve reliable results with high efficiency. 
Geometric parameters of pore and grain particles are often used as the 
structural descriptors for rock-typing (Li et al., 2017; Wang and Sun, 
2021). These parameters are fast and relatively straightforward to 
calculate, but may be inadequate for complex sedimentary and diage
netic deposits. Moreover, in the future exploitation of multi-scale 
rock-typing on images of different resolutions, descriptors of continu
ity will be preferred for comparable and correlative analysis considering 
the concealment of pore bodies or grain particles along with the 
reduction of image resolution. 

A set of robust morphological and topological descriptors called 
Minkowski functionals, consisting of volume, surface area, mean cur
vature and total curvature, have been used to characterize the internal 
structure of complex porous systems (Ismail et al., 2013). The innate 
additivity and excellent correlation with physical properties (Arns et al., 
2003) make them ideal as the descriptors for rock type classification. 
However, the generation of the maps of the regional Minkowski mea
sures over the digital image is carried out on a regional support (i.e. 
shifting window) scanning through the entire image, which is compu
tational expensive and the arithmetic operations will increase sharply if 
a large support size was required. To lower the computational cost, Fast 
Fourier Transform (FFT) (Cooley and Tukey, 1965) has been introduced 
into the procedures (Jiang and Arns, 2020a). The utilization of divide 
and conquer has enabled significant reduction of arithmetic operations 
and successfully eliminated the impact of window size growth, which 
greatly facilitated the application on digital images of real rock samples 
which may contain large grain particles. The excellence of Minkowski 
functionals in rock-typing has been proved through both artificial and 
natural porous systems (Jiang and Arns, 2020a). Moreover, preliminary 
tests of rock-typing on multi-resolution digital images using Minkowski 
functionals has been successful (Jiang and Arns, 2021), suggesting great 
potential in bridging the gap between micro-scale and continuum scale. 

However, during the generation of Minkowski fields, the determi
nation of regional support size has a major impact on the distribution of 
regional Minkowski measures. Traditional data clustering method like 
K-means (Ismail, 2014; Kuyuk et al., 2012) or Gaussian Mixture Model 

(GMM) (Huang and Chau, 2008; Kim and Kang, 2007; Sheppard et al., 
2014) can hardly yield consistent results from the maps of different 
regional support size. The practice on obtaining optimal rock-typing 
results would then be difficult and time-consuming. Towards the issue, 
we hereby propose a robust rock-typing method using Minkowski fields 
and a supervised machine learning method called Support Vector Ma
chines (SVM) (Boser et al., 1992; Vapnik et al., 1996). With the ability to 
handle both linear and non-linear discrimination analyses, SVM has 
been proved in many different problems an outstanding classifier (Furey 
et al., 2000; Melgani and Bruzzone, 2004; Osuna et al., 1997). Since 
SVM works on the parameter vectors on the boundary of the dividing 
margin rather than the characteristic means of different groups during 
the classification process, the workload for data labelling required by the 
model training process can be lessened significantly. The reference from 
labelling information will also assist fast and accurate separation of the 
feature maps. In addition, human intervention on rock type recognition 
processes allowed by the supervised learning method could be conve
nient and flexible for focused research activities on specific regional 
areas. 

Fulfilling the needs of computational efficiency and accuracy, as well 
as future analytical research between structural heterogeneity and fluid 
flow behaviors, we put forward a novel integrated pore-scale rock- 
typing method in this paper. Minkowski functionals associating FFT for 
fast characterization of the structural properties and SVM for rock type 
recognition are combined to efficiently acquire accurate pore-scale rock- 
typing results. We compare classification performance of SVM and GMM 
on the Minkowski fields from different support sizes for both artificial 
and natural porous structures. Upscaling of permeability based on the 
rock type distribution is later on practiced on the natural rock sample, 
which will be verified by direct numerical simulation. The homogeni
zation of the heterogeneous structural characteristics allows represen
tative sampling from the rock types for physical property estimation and 
regular downsampling of the full image, which would largely accelerate 
the upscaling of the full image. In Section 2, we introduce the micro
structures and mathematical methods involved in this study. In Section 
3, the classification and upscaling results from different scenarios are 
presented and analysed in detail. We also illustrated the test information 
about computational efficiency and training sample selection of SVM. In 
the last section, the paper is closed by the conclusions of this study. 

2. Methodology 

2.1. Gaussian random field and Boolean model 

We firstly implemented the rock-typing process on artificial hetero
geneous porous structures with defined rock-type distribution for a clear 
comparison of the classification performance of the two different 
methods. Two artificial structures containing different rock fabrics were 
constructed for the experiment. The map of rock-type distribution was 
generated using Gaussian random field (GRF) method. A one-level cut 
GRF with a field-field correlation function (Marcelja, 1990; Roberts, 
1997; Teubner and Strey, 1987) is applied: 

g(r) =
e− r/ξ − (rc/ξ)e− r/rc

1 − (rc/ξ)
sin(2πr/d)

2πr/d
(1)  

in which correlation length ξ = 0.4031, cutoff scale rc = 0.4033, and 
domain length scale d = 7.7069 following the same configuration setting 
as in (Roberts, 1997). On this basis, we stretched the GRF by a factor of 4 
horizontally at both x- and y-directions for more realistic 3D rock-type 
boundaries. 

After the determination of rock-type field, the microstructure was 
constructed using Boolean model. Grain particles were randomly placed 
in the field with the permit of overlapping of the bodies until the ex
pected porosity values were obtained for all rock types. Each rock type 
contains particles of uniform shape and size but are different from the 
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others. Both artificial samples share the same GRF distribution for the 
rock-type field, but contain different rock fabrics as shown in Fig. 1. The 
structural parameters are listed in Table 1. Both samples are comprised 
of 1600 × 1600 × 600 voxels. In this study, we focus on the recognition 
of rock types and accurate recovery of the boundaries through regional 
structural characteristics of the samples. Representative Elementary 
Volumes (REVs) of the rock types and the macrostructure are not 
required and thus not discussed. 

2.2. Precipice sandstone 

The natural porous sample used in this study is a subsection of a 
Precipice sandstone core plug from Surate basin, Australia. The porosity 
of the sample is 21.3% with less than 10% of clay minerals. Clear 
lamination structure can be seen from the image (Fig. 2(a)). The reso
lution of the image of this subplug is 5.17 μm/voxel and a totality of 990 
× 990 × 3300 voxels are contained within. In this work, we apply the 
rock-typing method on central 900 × 900 × 3020 voxels. The artifact in 
the tomogram from the scanning process was mitigated using a beam 
hardening correction method (Van de Casteele et al., 2004) provided by 
the “mango” image processing software (Sheppard et al., 2004), along 
with other image quality enhancement operations and phase segmen
tation (Fig. 2(b)). During the computation of regional Minkowski mea
sures, the segmented tomogram will be scanned through by an oblate 
window considering the horizontal lamination inside the sample, which 
is shaped by a = b = 4c (a, b and c are the half-axes of the window 
respectively in X, Y and Z dimensions) and c = 20, 30, …, 150. This 
window shape is applied on all the samples in this study except for the 
change of size. To reduce the shrinkage of the Minkowski maps from the 
regional computation, we mirrored the image at both ends of x- and 
y-directions, and the mirroring length is determined by the size of the 
shifting window. The initial tomogram size for the computation is 
900+2a, 900+2b and 2800+2c, so the resulting Minkowski fields from 
all window sizes for rock-typing are identically 900 × 900 × 2800 
voxels. Previous rock-typing study on this sample (Jiang and Arns, 
2021) has given excellent results with proved accuracy through 
upscaling of permeability and electrical conductivity, therefore are set 
as the classification target here (Fig. 2(c)). 

2.3. Minkowski functionals and fast Fourier transform 

Given the robustness in characterizing the morphological features of 
complex porous systems and the additivity allowing computation speed- 
up and window size adaptiveness enhancement through FFT (Jiang and 
Arns, 2020a), the Minkowski functionals consisting of volume V(Y), 
surface area S(Y), integral of mean curvature M(Y) and integral of total 
curvature X(Y)are chosen as the structural descriptors in this study. A 
thorough introduction about Minkowski functionals and their applica
tion to porous systems can be found in a recent review (Armstrong et al., 
2019). For a body Y with sufficiently smooth surface ∂Y in Euclidean 
3-space ℝ3, the Minkowski functionals are formulated as: 

S(Y) =
∫

∂Y

ds,

M(Y) =
∫

∂Y

1
2

(
1

r1(s)
+

1
r2(s)

)

ds,

X(Y) =
∫

∂Y

1
r1(s)r2(s)

ds.

(2)  

where r1(s) and r2(s) are the maximum and minimum curvature radii in 
Y, respectively. 

The realization of the Minkowski functionals from cubic lattices is 
accomplished through a linear relationship with the intrinsic volumes, 
as illustrated below (Arns et al., 2001, 2005): 

Fig. 1. X-Z slices (Y = 1400) through the artificial samples constructed using Boolean model on predetermined Gaussian Random Field (GRF). The shadowed and 
unshadowed areas cover the two rock types of composition, respectively. The dark regions refer to the solid particles, and the bright regions are pore space. 

Table 1 
The structural parameters of the two artificial samples.   

Sample 1 Sample 2  

RT1 RT2 RT1 RT2 

Particle shape Spherical Spherical Spherical Oblate 
Particle size/voxel r = 13 r = 26 r = 12 a = b = 24, c = 3 
Porosity 0.248 0.244 0.150 0188  

Fig. 2. X-Z slices (Y = 360) through the Precipice sandstone at a resolution of 
5.17 μm: (a) greyscale tomogram, the bright regions are solid particles, the dark 
regions are pore space, the grey regions represent clay minerals; (b) segmented 
tomogram, the dark regions refers to solid particles, the bright regions are pore 
space, the clay particles are categorized into the solid phase; (c) the rock-type 
distribution from (Jiang and Arns, 2021). 
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V0(Y) =
1

4π X(Y),

V1(Y) =
1

3π M(Y),

V2(Y) =
1
6

S(Y),

V3(Y) = V(Y).

(3) 

For a single voxel, the intrinsic volumes are normalized as V0 = V1 =

V2 = V3 = 1. 
The computation of regional Minkowski measures was conducted on 

segmented tomograms which contain voxels of either void or solid. We 
started by explicitly analyzing the spatial relationship from a minimum 
3D cubic unit of 23 voxels and calculating the corresponding intrinsic 
volumes Vi  of each vertex configuration (Arns et al., 2001; Jiang and 
Arns, 2020a).  22 different vertex configurations (or 256 types if not 
incorporating rotational symmetry) of a minimum cube will occur for a 
two-phase image, and each configuration refers to a defined contribu
tion to the Minkowski parameters. A detailed lookup table can be found 
in (Jiang and Arns, 2020a). The additivity of Minkowski functionals 
allows the extraction of the parameters on a regional area being the 
summation of all vertex configurations of each measuring unit inside the 
region. Scanned through by a regional support Ba,c( r→)of half-axes a = b 
= 4c, the regional Minkowski fields on a fixed structure X can be 
expressed as: 

CX,i,Ba,c ( r→) = Vi
[
X ∩ Ba,c( r→)

]
(4) 

In the above equation, r→refers to all the possible locations of the 
shifting window inside X. 

The additivity of Minkowski functionals has also created conditions 
for the introduction of FFT. In this scheme, other than direct summation 
inside every regional support as used previously (Ismail et al., 2013), the 
22 types of vertex configuration mentioned above will be processed 
separately through convolution over the entire image before they are 
summed up. Thus, the regional Minkowski fields are acquired through: 

CX,i,Ba,c ( r→) =
1

VB

∑21

i=0
ViI22,i( r→)∗Ba,c( r→) (5)  

where VBis the volume of the regional support, *denotes the convolu
tion, and the vertex indicator function I22,i( r→) is defined as: 

I22,i( r→) =

{
1, if IC22( r→) = i,

0, otherwise, (6)  

where IC22 represents the 22 kinds of vertex configurations and i ∈ [0; 
21] is an integer denoting the corresponding configuration concerned in 
current convolution. 

More details about the fast computation of Minkowski measures can 
be found in (Jiang and Arns, 2020a). The introduction of FFT into the 
workflow has greatly elevated the computational efficiency. In addition, 
the enlargement of the scanning window no longer put extra pressure on 
the quantities of the arithmetic operations behind the calculation of the 
parameters on a fixed image size, making the access to large window size 
for natural porous samples feasible. 

2.4. Gaussian mixture model 

Gaussian mixture model has been previously used for pore-scale 
rock-typing (Ismail et al., 2013; Jiang and Arns, 2020b; Wang and 
Sun, 2022) as well as many other data clustering problems in different 
research fields (Ni et al., 2020; Singhal et al., 2020; Yin et al., 2018). For 
a multivariate GMM applied to the fields of regional Minkowski mea
sures, it can be described as a weighted sum of K components: 

p( x→) =
∑K

i=1
wiN

(

x→
⃒
⃒
⃒
⃒
⃒
μi
→,
∑

i

)

(7)  

among which x→ is the parameter vector of a data point, and 
∑K

i=1wi = 1. 
Each component is characterized by a mean μi

→ and a covariance matrix 
∑

i of its own Gaussian Probability Density Function (PDF), and can be 
determined through: 

N

(

x→
⃒
⃒
⃒
⃒
⃒
μi
→,
∑

i

)

=
1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(2π)D⃒⃒
∑

i

⃒
⃒

√ exp

(

−
1
2
( x→− μi

→)
T
∑− 1

i
( x→− μi

→)

)

(8)  

where D refers to the dimension of the input parameters, and T means 
matrix transposition. By solving maximum likelihood problem through 
Expectation Maximization (EM) algorithm (Dempster et al., 1977), the 
characteristic parameters of each component could be determined and 
every sample data point will be assigned to one of the components based 
on the posterior probability distribution, forming the rock-typing re
sults. Hence, the input of the model only requires the Minkowski fields 
and the pre-defined number of the rock types. To accelerate the process, 
one can also input the subsamples of the rock types to the model for 
more reliable initial centers of the respective clusters. As a generative 
model, GMM is dependent on the original data distribution, inferring 
high sensitivity of the classification results upon the support size. 

2.5. Support vector machines 

Firstly proposed by (Vapnik et al., 1996) in 1992, the SVM algorithm 
is now one of the most important classifiers vastly applied in various 
problems (Kumar Yadav et al., 2022; Reynolds et al., 2019; Sithara et al., 
2020). The practice of SVM is comprised of two stages. Firstly, a pre
diction model has to be developed by learning a group of labelled data 
points containing necessary information of every category. The algo
rithm is designed to seek the separating hyperplane of maximum margin 
when dividing the dataset correctly at the same time. When a linear 
separation can not be found at the original parameter space, a kernel 
function can be applied to transform the data to another space of higher 
number of dimensions to achieve linear separation. We applied a kernel 
function called Radial Basis Function (RBF) (Patle and Chouhan, 2013) 
in this work  for better classification performance. After the construction 
of the prediction model, the parameter fields of the target sample will be 
imported for categorization. Initially, SVM was developed for binary 
classification, which has been extended to multi-class classification soon 
after (Chih-Wei Hsu and Chih-Jen Lin, 2002). 

The determination of the hyperplane is strongly connected to the 
vectors sitting on the boundaries of the margin, also known as the 
support vectors, which are normally computed from the adjoining area 
of two rock types. For correlated porous systems like rock samples, this 
could save a lot of efforts on data labelling and be advantageous for the 
improvement of the computational efficiency during the model training 
stage.  As a discriminative model, SVM learns the mapping relationship 
between the feature vector of each data point and the corresponding 
label, and the overall characteristics of data distribution is scarcely 
concerned. Therefore, the impact of regional window size on classifi
cation results can be diminished. In our work, both GMM and SVM 
classification were implemented in MATLAB. 

2.6. Permeability 

Numerical simulation of permeability in this paper is accomplished 
following the method developed by Arns and Adler (Arns and Adler, 
2018), which converts the Stokes flow problem into an electrical con
ductivity problem through the approximation of velocity field using a 
distance transform, and then Laplace solver is applied to derive 
permeability. In this article, comparable experiments between the 
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Laplace solver approach and the Lattice Boltzmann (LBM) solver have 
been carried out on highly resolved subsamples and received excellent 
agreement. On the other hand, for images of lower resolution where 
flow path cannot be sufficiently recovered, the Laplace solver presents 
higher stability. The detail description of approximation process can be 
found in Section 2.b of (Arns and Adler, 2018). The derived Laplace 
equation is discretized by the box integration method. Periodical 
boundary conditions are applied to the three dimensions, and the dis
cretized system is solved using the conjugate gradient algorithm. The 
computation of permeability is conducted in x, y and z directions, 
respectively. But in the section of results and discussion, we combine the 
results from x and y directions due to the strong layering feature of the 
rock sample and little variance between the results, horizontal and 
vertical directions (kh and kv) are used instead in the section. 

2.7. Upscaling workflow 

The procedures of upscaling of permeability on a rock type field is 
threefold. The first step is sampling of representative cubic subsamples 
for each rock types. FFT algorithm is applied to efficiently locate the 
subsamples of pure rock type over the entire image. The locations will 
then be screened in the balance of overlap reduction between the sub
samples and a larger sampling number under the restriction of the image 
size. The second step is to acquire representative permeability for each 
rock type. We compute the permeability of every subsample from the 
same rock type using the Laplace solver approach and obtain the average 
permeability values for every direction. The averaged values are later on 
assigned to all the voxels belonging to this rock type, and treated as the 
approximation values representing local permeability/hydraulic con
ductivity. On this basis, we use the same discretization and solution 
algorithms to obtain the permeability of the full image as introduced in 

the previous section. A flow chart for the permeability upscaling 
workflow is provided in Fig. 3. Since all voxels in each rock type share 
the same value, the data variation of the discretized system is sharply 
reduced which allows quick convergence of the mathematical solution. 
This upscaling strategy through representative physical properties on 
the rock type field is an efficient method to alleviate the demand for 
computational resources and accelerate the computing process. 

3. Results and discussion 

We compared the two rock-typing algorithms (GMM and SVM) firstly 
on two synthetic porous systems of different rock fabric components, 
then extended the study to a natural sandstone rock sample of lamina
tion structure. 

3.1. Artificial models 

Artificial sample 1 is filled by two rock types both containing sphere 
shape particles, and the radii of the spheres are 13 and 26 voxels for rock 
type 1 and 2, respectively. The regional Minkowski measures are 
computed from the pure microstructure without Gaussian Random Field 
(GRF) labels (Fig. 4(a)), and the measuring window is shaped a = b = 4c 
(a, b and c are the half-axes of the window respectively in X, Y and Z 
dimensions) and c = 10, 20, 30, …, 60 voxels. The distribution of the 
regional Minkowski measures of sample 1 from c = 20 and 60 voxels are 
demonstrated in Fig. 5 (other Minkowski maps of sample 1 can be found 
in SI1). The noneffective computation at the edges of the sample caused 
image size shrinkage, which was determined by the size of the shifting 
window. The fluctuation of the Minkowski measures at c = 20 voxels is 
distinctively stronger than the values obtained at 60 voxels, and the data 
range is much broader. The boundaries between two rock types are 
sharply delineated at c = 20 voxels (except for the porosity map, which 
was designed to be the same), while for the Minkowski maps of c = 60 
voxels, the boundary regions have grew a lot wider. 

To evaluate the accuracy of the rock type classification process, the 
classification maps obtained using GMM and SVM based on the Min
kowski fields are compared with the original GRF distribution (Fig. 4(b)) 
voxel-to-voxel, and the results are plotted in Fig. 6. The difference be
tween SVM1 and SVM2 comes from the composition of the model 
training data. The training data of SVM1 was composed of two cubic 
subsamples from the two rock types contained in the image, excluding 
rock type boundary information, while  the training data of SVM2 was a 
2D slice of XZ plane offering the statistical information of the contact 
area between the rock types. The determination of the cubic subsamples 
is implemented through a convolution process using FFT. Firstly the 
maximum cube size exists in both rock types is tested from the GRF map. 
Then all possible locations of the cubes are recorded, and we pick the 
subsamples from the middle of the sequence to constitute the training 
data. For c = 20 voxels, the subsamples have a side length of 110 voxels, 
and for c = 60 voxels, the side length is 90 voxels due to the shrinkage of 
the image size after the calculation of Minkowski measures on a bigger 
shifting window. The accuracy of the classification results of all three 
methods peaks at c = 20 voxels, then the accuracy decreases as the 
window size grows. SVM2 gives the highest rock-typing accuracy at 
every data point and all the accuracy values are above 94% with a peak 
of 97.8%. The accuracy of SVM1 drops faster than SVM2, but still gives a 
good performance of above 92% before c = 60 voxels. GMM is most 
sensitive to the change of regional window size and the classification 
accuracy drops fast to below 80%. Graphical illustration of the classi
fication results is presented in Fig. 7, the increase of the window size 
caused much greater bias of the rock type boundaries defined by GMM 
than SVM2. 

The same rock-typing procedure has been applied to artificial sample 
2 (Fig. 8(a)), which shares the same GRF map with sample 1 (Fig. 8(b)), 
and the classification results are given in Fig. 9. The cross-sections of the 
Minkowski maps can be found in SI2. All three methods give the best 

Fig. 3. Flow-chart of the permeability upscaling workflow. After the rock types 
(RT) are defined, two methods for the extraction of representative permeability 
of each rock type are tested. Single subsampling method refers to the deter
mination of  representative permeability (KRT) computed from one maximum 
cube of each rock type. Multiple subsampling method refers to the determi
nation of representative permeability (KRT_A) averaged from multiple cubic 
subsamples (the size may shrink to avoid overlapping of the cubes) of each rock 
type. The representative values from different methods are then assigned to all 
the voxels belonging to this rock type respectively for macroscopic permeability 
computation and comparative analysis. 
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results at c = 10 voxels due to the reduction of particle size, then the 
accuracy decreases, though at different pace, as the window size grows. 
SVM2 offers the accuracy of above 94% throughout the test and gives 
the best result at every test point. SVM1 drops from 98% at c = 10 voxels 
to 89% at c = 60 voxels. The classification results of GMM are heavily 
affected by the change of window size and the accuracy drops rapidly to 
70%. The graphical classification results are provided in SI3. 

3.2. Precipice sandstone 

After the tests on synthetic microstructures, we applied the two 
methods to a natural sandstone sample of layered structures. The ideal 
rock type distribution for the evaluation of the classification results is 
provided by (Jiang and Arns, 2021), which was obtained from the 
regional Minkowski maps of window size a = b = 4c=440 voxels using 

Fig. 4. X-Z slices (Y = 800) through artificial sample 1: (a) microstructure generated using Boolean model on the GRF; (b) GRF containing two classes (bright: rock 
type 1, dark: rock type 2). 

Fig. 5. X-Z slices (Y = 800) of 3D Minkowski maps of sample 1. Pictures at the left column are obtained from window size c = 20 voxels, the images are sized 1440 ×
560 voxels; pictures at the right column are from c = 60 voxels and sized 1120 × 480 voxels (V: porosity, S: surface area, M: mean curvature, X: total/ 
Gaussian curvature). 
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GMM method. An upscaling process of permeability and electrical 
conductivity of the sample has been applied upon the rock type distri
bution and exhibited high accuracy comparing with direct computa
tional results. Since the classification result from the Minkowski maps 
acquired at c = 110 voxels is used for verification, it is no longer 
included in the numerical experiments. The support size of c = 20, 30, 
40, …, 150 voxels (except for c = 110 voxels) are contained in the test, 
and regional Minkowski maps acquired at different window sizes are 
displayed in Fig. 10 (other Minkowski maps of the Precipice sandstone 
can be found in SI4). At a small window size like c = 20 voxels, the range 
of Minkowski values is much wider. Meanwhile, the distribution of the 
values in space is heavily fluctuated, and the statistical contrast between 

different laminations is hard to distinguish given the canopy of the 
clusters of extreme values, as shown in the first row of Fig. 10. The 
second row of figures are from c = 100 voxels. A larger window size 
covering wider spatial structures presents comparatively smoother 
transition of the characteristics, and offers clear contrast between 
different regions. As the window size growth continues, we can see from 
the last row of Fig. 10 the contrast of the rock types is weakened. 
Although from our visual perception the layering structure maintains 
still, it is hard for generative model like GMM to learn the difference 
from statistical perspectives. 

The two different classification algorithms were applied to the 

Fig. 6. The comparison of the classification accuracy of GMM and SVM on 
sample 1. 

Fig. 7. 2D graphical comparison of the rock-typing results by GMM and SVM on artificial sample 1 with Minkowski maps from c = 20 and 60 voxels. The grey regions 
refer to the mismatch of the rock types. The GRF (Fig. 3(b)) is overlapped by the classification maps of (a) GMM of c = 20 voxels, (b) SVM2 of c = 20 voxels, (c) GMM 
of c = 60 voxels and (d) SVM2 of c = 60 voxels. 

Fig. 8. X-Z slices (Y = 800) through artificial sample 2: (a) microstructure generated using Boolean model on the GRF; (b) GRF containing two classes (bright: rock 
type 1, dark: rock type 2). 

Fig. 9. The comparison of the classification accuracy of GMM and SVM on 
sample 2. 
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Fig. 10. XZ planes (Y = 360) of 3D Minkowski maps of the Precipice sandstone. (a-d): the Minkowski maps from the window size of c = 20 voxels, and the 3D image 
sizes are 900 × 900 × 2800 voxels; (e-h): c = 100 voxels and the 3D image sizes are 900 × 900 × 2800 voxels; (i-l): c = 150 voxels and the image sizes are 900 × 900 
× 2720 voxels. The shrinkage from Z direction is from the regional computation process. 
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Minkowski maps. Moreover, we added another kind of SVM model 
training method (i.e. SVM3) which uses 10 XZ layers with a spacing of 4 
layers between every two consecutive layers as the input. The classifi
cation results from the different methods are compared in Fig. 11. The 
results of GMM on c = 140 &150 voxels are not available because GMM 
failed to divide the data into different groups from the corresponding 
feature maps. The growth of window size has generally brought higher 
accuracy for all methods in the test. SVM3 delivers the best classification 
results: the accuracy tops 90% after c = 70 voxels and maintains over 
95% since c = 100 voxels. The classification results of SVM2 is very close 
to SVM3 despite reduced training data size. SVM1 couldn’t recover the 
rock type distribution appropriately due to the lack of boundary infor
mation. Comparing with artificial samples, the lack of boundary infor
mation has caused severe impact on the classification results of the 
natural sandstone through SVM, as the transition between rock types 
formed by the sedimentary and diagenesis process is much less abrupt 
and thus harder to define. GMM exhibited poor performance at smaller 
window sizes, and slight fluctuation appears at the front is caused by the 
gradual filling of the isolated rock type clusters in the mismatched re
gion as shown in Fig. 12. The increase of regional window size has 
helped the rock-typing performance, and the accuracy rises above 88% 
from c = 90 to c = 130 voxels. However, GMM failed to classify the 
structural type since c = 140 voxels because of the weak contrast of 
structural characteristics between the rock types, whereas SVM method 
can still deliver high accuracy. 

3.3. Upscaling of permeability 

After the rock type classification, representative physical properties 
for each rock type need to be determined and assigned to the corre
sponding region for the preparation of full image upscaling. Two 
different methods were applied at this stage. In the first method, one 
subsample of 6003 voxels (the biggest cube available for both rock types) 
was selected for each type. kh and kv of the subsamples were computed 
and directly utilized for the upscaling process. In the second method, 
thirteen 5003 subsamples were picked up for each rock type after 
screening through an interval of 200 voxels (limited by the image size of 
900 voxels at x and y directions) at each direction. Average values for kh 
and kv from the 13 subsamples were used for the upscaling process. The 
comparison of the physical properties of the rock types from the two 
different methods can be found in Table 2. We use the rock type clas
sification results from the regional support size of c = 130 voxels with an 
accuracy of 96%. The subsamples of rock type 1 are extracted from the 
blue region as shown in Fig. 12, and the subsamples of rock type 2 are 

extracted from the red region. The permeability and porosity values of 
method 1 fall into the range of method 2 but are deviated from the 
average. The porosity values of both rock types are quite close to each 
other, while the permeability values are one order of magnitude 
different. 

The representative permeability values of the rock types from these 
two methods were then assigned to the corresponding regions, and 
upscaling from the rock type field was complemented respectively 
following the workflow introduced in Section 2.7. The results from the 
upscaling process were compared to direct computation of the full image 
as shown in Table 3, and the direct computation of the permeability of 
the full image is accomplished using the same Laplace solver approach 
introduced in the Section 2.6. Both methods yield results of excellent 
accuracy, but upscaling from method 2 using average permeability 
values presents noticeably higher accuracy of over 94% comparing with 
method 1. During the upscaling procedure, averaging over multiple 
subsamples would be a better choice if minor heterogeneity exists inside 
the rock types. On the other hand, Method 1 provides satisfactory 
upscaling results with lower computational cost. 

3.4. Computational efficiency 

During the practice of SVM classification, we have noticed the model 
training process was quite time consuming. Considering the robust 
discriminative ability of SVM, we decided to run a series of tests on the 
training of SVM model using the same training data set but down
sampled by different scale, and observe the influence on the accuracy of 
rock-typing process. We have downsized the training data of 10 XZ 
layers to its 1/10th, 1/100th and 1/1000th by uniformly picking up data 
points at a required interval from the whole set. The tests were carried 
out on the Minkowski maps derived from the support size of c = 100 
voxels (a = b = 4c) using single CPU core, and the results are collected in 
Table 4. The reduction in data size could greatly accelerate the speed of 
the construction of the discriminative model by up to 6 orders of mag
nitudes and the model training can be finished within half second, while 
the accuracy of the rock type classification is not detracted at all. 
Stronger applicability has thus been exhibited for SVM rock-typing with 
the economization on both time and computational resources. In addi
tion, the speed increase would be more distinct when more than 2 rock 
types are trained using this approach, while the downsampling of the 
training data should be reduced for better rock type classification 
performance. 

3.5. Location of the model training dataset 

We have also analysed the impact of the location of the training data 
on the classification results based on the digital image of the laminated 
sandstone. Across the Y dimension of the sample, we picked up 5 
different locations (1/5th, 2/5th, 1/2nd, 3/5th and 4/5th of the whole 
length) to be the starting layer of the training data (using 10 spaced 
layers as a training set) for SVM3. The tests were carried out on the 
Minkowski maps from support size of c = 90 & 100 voxels, and the 
training data were downsized to its 1/1000th for computational effi
ciency. The classification results are listed in Table 5.  Both groups have 
manifested excellent rock-typing results from all 5 training sets, and the 
variance of the accuracy is within 3%. Nevertheless, both groups have 
obtained the best results from the 3/5th of the length of Y dimension. As 
can be seen from Fig. 2, the Precipice sandstone is laminated along the Z 
dimension, implicating strong structural correlation of the cross-sections 
at both X and Y directions. As long as the constituting layers of the 
training data are perpendicular to the lamination, the variance brought 
by the position of the layers can be neglected for fast computation, 
which has also facilitated the preparation of the training dataset. 

Fig. 11. The comparison of the classification accuracy of GMM and SVM on 
Precipice sandstone. 
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Fig. 12. The recovered rock type distribution through GMM and SVM3 method on the Minkowski maps from different support sizes. (a): GMM classification on the 
support size of c = 20 voxels; (b) GMM classification on c = 100 voxels; (c) GMM classification on c = 150 voxels; (d) SVM3 classification on c = 20 voxels; (e) SVM3 
classification on c = 100 voxels; (f) SVM3 classification on c = 150 voxels. 
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4. Conclusions 

In this work, we used Minkowski functionals as the morphological 
and topological descriptors of the complex microstructures. Fast 
computation of the 3D Minkowski maps is realized via a previously 
developed FFT method. Two partitioning methods of GMM and SVM are 
compared for the rock type classification from the maps of the 
descriptive parameters. Based on the rock type distribution, upscaling of 
permeability is practiced on the digital image of a natural laminated 
sandstone. Following conclusions are drawn from the study:  

(1) The size of the regional support has significant impact on the 
descriptive abilities of the morphological and topological 
parameters.  

(2) The rock type classification results using traditional unsupervised 
data clustering methods like GMM are heavily dependent on the 
description of the regional parameters and show high sensitivity 
to the change of the support size.  

(3) Supervised classification method SVM has presented much higher 
accuracy with strong stability towards the variation of the sup
port size during the rock type classification process. The strong 
discriminative abilities of SVM and innate structural correlation 
of the microstructures allow light preparation of data labelling for 
the model training process, which have also enabled the escala
tion of computational efficiency.  

(4) Upscaling of permeability on the rock type distribution achieves a 
high accuracy of 94% comparing with the results of direct nu
merical simulation on the full image, illustrating good potential 
for efficient physical property estimation on broader range. 

With carefully defined rock types, the trade-off of image resolution 

and FOV between the multi-resolution computational tomograms of a 
core plug may become complementary instead. If rock types on different 
resolutions could be accurately recognized, upscaling of physical prop
erty on core scale could be achievable, which is also the future 
endeavour of the authors. As the physical length of this upscaling 
approach reaches centimeter scale, comparative analyses can be con
ducted between image-based numerical results and laboratory mea
surements, and link further to the information of on-site logging data 
with advanced methodological and computational support. For rocks 
with higher level of heterogeneity such as shale, recognition of the 
laminations especially those similar to each other, could be very bene
ficial for analytical efficiency and theoretical advancement, while the 
determination of characteristic physical properties requires more deli
cate treatment. 
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