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The rapid advancement of digital core analysis has greatly promoted the research progress of flow and transport
in porous media. However, complex analytical process with exceeding computational load impedes the appli-
cation on large data volume. Considering the strong heterogeneity of the underground porous media, the inte-
gration of pore-scale information into continuum scale is widely concerned for the future development of digital
physical analysis. For hierarchical porous structures, pore-scale rock-typing and upscaling of petrophysical
properties is a promising solution towards the issue, and morphological and topological descriptors associating
data clustering methods are popularly utilized. However, the size of the regional support through which the
parameter fields are generated heavily affects the descriptive capacities of the parameters and the following
partitioning process. We propose in this work a robust integrated pore-scale rock-typing and upscaling tech-
nology for 3D porous structures which uses Minkowski functionals as the descriptive parameters. A fast-
computational method utilising fast Fourier transform has been applied for efficient generation of the param-
eter fields. A comparative study between the two different classification methods of Support Vector Machine
(SVM) and Gaussian Mixture Model (GMM) has been conducted on two complex artificial porous systems and a
laminated sandstone through various regional support sizes. Throughout the test, SVM has illustrated obvious
advantage of overcoming regional support size effect even with limited labelling information. The Upscaling of
permeability on the natural sandstone sample based on the rock type distribution has demonstrated excellent
accuracy comparing with full scale direct computation.

1. Introduction

With the fast development of pore-scale imaging and computational
technologies, digital core analysis has become the most popular toolset
for the study of flow and transport in porous media, which happens in
many important economic and environmental subsurface projects, such
as geological sequestration of carbon dioxide or hydrogen, utilization of
geothermal resources and groundwater remediation (Luo et al., 2014;
Lysyy et al., 2022; Mascini et al., 2021; C. Qin et al., 2022; C.-Z. Qin
et al., 2022; Sadeghnejad et al., 2021). The unparallel access to
pore-scale details offered by digital core analysis technology allows
explicit observations of the dynamic processes of the fluids within the
channels. However, there is trade-off between the resolution and the
field of view (FOV) of the computational tomograms owing to the
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constraints of contemporary micro-computed tomography capacities
(Garum et al., 2021; Jiang and Arns, 2021; C. Qin et al., 2022; C.-Z. Qin
et al., 2022; You et al., 2021). And with demanding computational ex-
penses required by the simulations of complex fluidic movements, nu-
merical simulations are normally carried out on cubic digital samples of
a few hundred voxels in side length, which refers to the scale between
micrometer and millimeter. Considering the heterogeneity of reservoir
rock across different length scales, the extension of numerical im-
provements to continuum-scale is widely concerned for theoretical and
practical advancements but currently under restraints.

The integration of explicit structural information on high resolution
tomograms and complete FOV on low resolution tomograms can be a
promising solution to narrow down the gap. Therefore, numerical
analysis on multi-scale tomograms is widely concerned in the research
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field (Jackson et al., 2022; W.S.K. Botha and P.Sheppard, 2016). But due
to strong heterogeneity of the complex porous systems, mapping of
numerical estimations and graphical information between different
resolutions and the upscaling of physical properties can be very chal-
lenging. Simple averaging over a large volume that contains distinct
variations can hardly fulfill the task. A more scientific approach would
be recognizing regions of similar properties and extracting their repre-
sentative values for the coupling to the continuum. This idea of
upscaling with homogenization as a common choice has been applied in
various fields, such as reservoir engineering (Aguilar-Madera et al.,
2019), hydrogeology (Zhou and Meschke, 2018), geophysics (Amanbek
etal., 2019) and material science (Iliev et al., 2020). Pore-scale rock type
classification and upscaling method is hence introduced for the
connection between pore to continuum scale (Jiang and Arns, 2021;
Ruspini et al., 2021; Wang and Sun, 2021), which could preserve most
information during transport and reduce the computational expenses of
numerical simulations dramatically. Nevertheless, successful applica-
tion of the strategy requires deep analytical work of the microstructure
inside the target sample.

Different from petrophysical rock-typing in flow unit interpretation
partitioning directly on flow characteristics (Ji et al., 2022),
image-based rock type classification studies the fundamental pore-scale
information on a voxel-by-voxel basis throughout the computational
tomogram. For a full high-resolution scan of a rock sample, the 3D
digital image will be comprised of billions of voxels, which brings heavy
computational burden for following analytical work (Han et al., 2022).
Careful designing of rock-typing strategies is required for both accuracy
and computational efficiency, and furthermore, assisting the correlative
research between structural characteristics and fluid flow behaviors. A
combination of porous structure feature extraction and data clustering is
a competitive toolset to achieve reliable results with high efficiency.
Geometric parameters of pore and grain particles are often used as the
structural descriptors for rock-typing (Li et al., 2017; Wang and Sun,
2021). These parameters are fast and relatively straightforward to
calculate, but may be inadequate for complex sedimentary and diage-
netic deposits. Moreover, in the future exploitation of multi-scale
rock-typing on images of different resolutions, descriptors of continu-
ity will be preferred for comparable and correlative analysis considering
the concealment of pore bodies or grain particles along with the
reduction of image resolution.

A set of robust morphological and topological descriptors called
Minkowski functionals, consisting of volume, surface area, mean cur-
vature and total curvature, have been used to characterize the internal
structure of complex porous systems (Ismail et al., 2013). The innate
additivity and excellent correlation with physical properties (Arns et al.,
2003) make them ideal as the descriptors for rock type classification.
However, the generation of the maps of the regional Minkowski mea-
sures over the digital image is carried out on a regional support (i.e.
shifting window) scanning through the entire image, which is compu-
tational expensive and the arithmetic operations will increase sharply if
a large support size was required. To lower the computational cost, Fast
Fourier Transform (FFT) (Cooley and Tukey, 1965) has been introduced
into the procedures (Jiang and Arns, 2020a). The utilization of divide
and conquer has enabled significant reduction of arithmetic operations
and successfully eliminated the impact of window size growth, which
greatly facilitated the application on digital images of real rock samples
which may contain large grain particles. The excellence of Minkowski
functionals in rock-typing has been proved through both artificial and
natural porous systems (Jiang and Arns, 2020a). Moreover, preliminary
tests of rock-typing on multi-resolution digital images using Minkowski
functionals has been successful (Jiang and Arns, 2021), suggesting great
potential in bridging the gap between micro-scale and continuum scale.

However, during the generation of Minkowski fields, the determi-
nation of regional support size has a major impact on the distribution of
regional Minkowski measures. Traditional data clustering method like
K-means (Ismail, 2014; Kuyuk et al., 2012) or Gaussian Mixture Model
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(GMM) (Huang and Chau, 2008; Kim and Kang, 2007; Sheppard et al.,
2014) can hardly yield consistent results from the maps of different
regional support size. The practice on obtaining optimal rock-typing
results would then be difficult and time-consuming. Towards the issue,
we hereby propose a robust rock-typing method using Minkowski fields
and a supervised machine learning method called Support Vector Ma-
chines (SVM) (Boser et al., 1992; Vapnik et al., 1996). With the ability to
handle both linear and non-linear discrimination analyses, SVM has
been proved in many different problems an outstanding classifier (Furey
et al., 2000; Melgani and Bruzzone, 2004; Osuna et al., 1997). Since
SVM works on the parameter vectors on the boundary of the dividing
margin rather than the characteristic means of different groups during
the classification process, the workload for data labelling required by the
model training process can be lessened significantly. The reference from
labelling information will also assist fast and accurate separation of the
feature maps. In addition, human intervention on rock type recognition
processes allowed by the supervised learning method could be conve-
nient and flexible for focused research activities on specific regional
areas.

Fulfilling the needs of computational efficiency and accuracy, as well
as future analytical research between structural heterogeneity and fluid
flow behaviors, we put forward a novel integrated pore-scale rock-
typing method in this paper. Minkowski functionals associating FFT for
fast characterization of the structural properties and SVM for rock type
recognition are combined to efficiently acquire accurate pore-scale rock-
typing results. We compare classification performance of SVM and GMM
on the Minkowski fields from different support sizes for both artificial
and natural porous structures. Upscaling of permeability based on the
rock type distribution is later on practiced on the natural rock sample,
which will be verified by direct numerical simulation. The homogeni-
zation of the heterogeneous structural characteristics allows represen-
tative sampling from the rock types for physical property estimation and
regular downsampling of the full image, which would largely accelerate
the upscaling of the full image. In Section 2, we introduce the micro-
structures and mathematical methods involved in this study. In Section
3, the classification and upscaling results from different scenarios are
presented and analysed in detail. We also illustrated the test information
about computational efficiency and training sample selection of SVM. In
the last section, the paper is closed by the conclusions of this study.

2. Methodology
2.1. Gaussian random field and Boolean model

We firstly implemented the rock-typing process on artificial hetero-
geneous porous structures with defined rock-type distribution for a clear
comparison of the classification performance of the two different
methods. Two artificial structures containing different rock fabrics were
constructed for the experiment. The map of rock-type distribution was
generated using Gaussian random field (GRF) method. A one-level cut
GRF with a field-field correlation function (Marcelja, 1990; Roberts,
1997; Teubner and Strey, 1987) is applied:

18 — (r./&)e"/™ sin(2xr/d)
1—(r./¢) 2zr/d

in which correlation length & = 0.4031, cutoff scale r. = 0.4033, and
domain length scale d = 7.7069 following the same configuration setting
as in (Roberts, 1997). On this basis, we stretched the GRF by a factor of 4
horizontally at both x- and y-directions for more realistic 3D rock-type
boundaries.

After the determination of rock-type field, the microstructure was
constructed using Boolean model. Grain particles were randomly placed
in the field with the permit of overlapping of the bodies until the ex-
pected porosity values were obtained for all rock types. Each rock type
contains particles of uniform shape and size but are different from the
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others. Both artificial samples share the same GRF distribution for the
rock-type field, but contain different rock fabrics as shown in Fig. 1. The
structural parameters are listed in Table 1. Both samples are comprised
of 1600 x 1600 x 600 voxels. In this study, we focus on the recognition
of rock types and accurate recovery of the boundaries through regional
structural characteristics of the samples. Representative Elementary
Volumes (REVs) of the rock types and the macrostructure are not
required and thus not discussed.

2.2. Precipice sandstone

The natural porous sample used in this study is a subsection of a
Precipice sandstone core plug from Surate basin, Australia. The porosity
of the sample is 21.3% with less than 10% of clay minerals. Clear
lamination structure can be seen from the image (Fig. 2(a)). The reso-
lution of the image of this subplug is 5.17 pm/voxel and a totality of 990
x 990 x 3300 voxels are contained within. In this work, we apply the
rock-typing method on central 900 x 900 x 3020 voxels. The artifact in
the tomogram from the scanning process was mitigated using a beam
hardening correction method (Van de Casteele et al., 2004) provided by
the “mango” image processing software (Sheppard et al., 2004), along
with other image quality enhancement operations and phase segmen-
tation (Fig. 2(b)). During the computation of regional Minkowski mea-
sures, the segmented tomogram will be scanned through by an oblate
window considering the horizontal lamination inside the sample, which
is shaped by a = b = 4c (a, b and c are the half-axes of the window
respectively in X, Y and Z dimensions) and ¢ = 20, 30, ..., 150. This
window shape is applied on all the samples in this study except for the
change of size. To reduce the shrinkage of the Minkowski maps from the
regional computation, we mirrored the image at both ends of x- and
y-directions, and the mirroring length is determined by the size of the
shifting window. The initial tomogram size for the computation is
900+2a, 900+2b and 2800+2c, so the resulting Minkowski fields from
all window sizes for rock-typing are identically 900 x 900 x 2800
voxels. Previous rock-typing study on this sample (Jiang and Arns,
2021) has given excellent results with proved accuracy through
upscaling of permeability and electrical conductivity, therefore are set
as the classification target here (Fig. 2(c)).

2.3. Minkowski functionals and fast Fourier transform

Given the robustness in characterizing the morphological features of
complex porous systems and the additivity allowing computation speed-
up and window size adaptiveness enhancement through FFT (Jiang and
Arns, 2020a), the Minkowski functionals consisting of volume V(Y),
surface area S(Y), integral of mean curvature M(Y) and integral of total
curvature X(Y)are chosen as the structural descriptors in this study. A
thorough introduction about Minkowski functionals and their applica-
tion to porous systems can be found in a recent review (Armstrong et al.,
2019). For a body Y with sufficiently smooth surface dY in Euclidean
3-space R, the Minkowski functionals are formulated as:
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Table 1
The structural parameters of the two artificial samples.
Sample 1 Sample 2
RT1 RT2 RT1 RT2
Particle shape Spherical Spherical Spherical Oblate
Particle size/voxel r=13 r=26 r=12 a=b=24,c=3
Porosity 0.248 0.244 0.150 0188
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Fig. 2. X-Z slices (Y = 360) through the Precipice sandstone at a resolution of
5.17 um: (a) greyscale tomogram, the bright regions are solid particles, the dark
regions are pore space, the grey regions represent clay minerals; (b) segmented
tomogram, the dark regions refers to solid particles, the bright regions are pore
space, the clay particles are categorized into the solid phase; (c) the rock-type
distribution from (Jiang and Arns, 2021).

M) = /% (Vlts) +VZES))dS7 &)
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where r1(s) and ry(s) are the maximum and minimum curvature radii in
Y, respectively.

The realization of the Minkowski functionals from cubic lattices is
accomplished through a linear relationship with the intrinsic volumes,
as illustrated below (Arns et al., 2001, 2005):

Fig. 1. X-Z slices (Y = 1400) through the artificial samples constructed using Boolean model on predetermined Gaussian Random Field (GRF). The shadowed and
unshadowed areas cover the two rock types of composition, respectively. The dark regions refer to the solid particles, and the bright regions are pore space.
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Vi(Y) = 5 M), o
Vo(¥) = £500),
V%(Y) = V(Y)

For a single voxel, the intrinsic volumes are normalized as Vo = V; =
Vy=Vy=1.

The computation of regional Minkowski measures was conducted on
segmented tomograms which contain voxels of either void or solid. We
started by explicitly analyzing the spatial relationship from a minimum
3D cubic unit of 22 voxels and calculating the corresponding intrinsic
volumes V; of each vertex configuration (Arns et al., 2001; Jiang and
Arns, 2020a). 22 different vertex configurations (or 256 types if not
incorporating rotational symmetry) of a minimum cube will occur for a
two-phase image, and each configuration refers to a defined contribu-
tion to the Minkowski parameters. A detailed lookup table can be found
in (Jiang and Arns, 2020a). The additivity of Minkowski functionals
allows the extraction of the parameters on a regional area being the
summation of all vertex configurations of each measuring unit inside the
region. Scanned through by a regional support B, (7)of half-axesa =b
= 4c, the regional Minkowski fields on a fixed structure X can be
expressed as:

Cxip. (7)) = Vi[X N B, (7)] (C)]

a.c

In the above equation, T refers to all the possible locations of the
shifting window inside X.

The additivity of Minkowski functionals has also created conditions
for the introduction of FFT. In this scheme, other than direct summation
inside every regional support as used previously (Ismail et al., 2013), the
22 types of vertex configuration mentioned above will be processed
separately through convolution over the entire image before they are
summed up. Thus, the regional Minkowski fields are acquired through:

| &
Cxin, (T) = A Z Vil (T7) % B o (T) )

i=0

where Vgis the volume of the regional support, *denotes the convolu-
tion, and the vertex indicator function Igz_i(?) is defined as:

= _ [ LIfICH(F) =,
bai(7) = { 0, otherwise, ®)

where ICy; represents the 22 kinds of vertex configurations and i € [0;
21] is an integer denoting the corresponding configuration concerned in
current convolution.

More details about the fast computation of Minkowski measures can
be found in (Jiang and Arns, 2020a). The introduction of FFT into the
workflow has greatly elevated the computational efficiency. In addition,
the enlargement of the scanning window no longer put extra pressure on
the quantities of the arithmetic operations behind the calculation of the
parameters on a fixed image size, making the access to large window size
for natural porous samples feasible.

2.4. Gaussian mixture model

Gaussian mixture model has been previously used for pore-scale
rock-typing (Ismail et al., 2013; Jiang and Arns, 2020b; Wang and
Sun, 2022) as well as many other data clustering problems in different
research fields (Ni et al., 2020; Singhal et al., 2020; Yin et al., 2018). For
a multivariate GMM applied to the fields of regional Minkowski mea-
sures, it can be described as a weighted sum of K components:

Advances in Water Resources 183 (2024) 104605

p(¥) = Z w;N <?

E), Zz) (7)

among which X is the parameter vector of a data point, and > ;w; = 1.
Each component is characterized by a mean y; and a covariance matrix
> of its own Gaussian Probability Density Function (PDF), and can be
determined through:

1 1 —1
w(=. ,.)—exp<<7m>f ,.(?»T’,-)> ®
( Z \/(2”)0{2;1 2 Z

where D refers to the dimension of the input parameters, and T means
matrix transposition. By solving maximum likelihood problem through
Expectation Maximization (EM) algorithm (Dempster et al., 1977), the
characteristic parameters of each component could be determined and
every sample data point will be assigned to one of the components based
on the posterior probability distribution, forming the rock-typing re-
sults. Hence, the input of the model only requires the Minkowski fields
and the pre-defined number of the rock types. To accelerate the process,
one can also input the subsamples of the rock types to the model for
more reliable initial centers of the respective clusters. As a generative
model, GMM is dependent on the original data distribution, inferring
high sensitivity of the classification results upon the support size.

2.5. Support vector machines

Firstly proposed by (Vapnik et al., 1996) in 1992, the SVM algorithm
is now one of the most important classifiers vastly applied in various
problems (Kumar Yadav et al., 2022; Reynolds et al., 2019; Sithara et al.,
2020). The practice of SVM is comprised of two stages. Firstly, a pre-
diction model has to be developed by learning a group of labelled data
points containing necessary information of every category. The algo-
rithm is designed to seek the separating hyperplane of maximum margin
when dividing the dataset correctly at the same time. When a linear
separation can not be found at the original parameter space, a kernel
function can be applied to transform the data to another space of higher
number of dimensions to achieve linear separation. We applied a kernel
function called Radial Basis Function (RBF) (Patle and Chouhan, 2013)
in this work for better classification performance. After the construction
of the prediction model, the parameter fields of the target sample will be
imported for categorization. Initially, SVM was developed for binary
classification, which has been extended to multi-class classification soon
after (Chih-Wei Hsu and Chih-Jen Lin, 2002).

The determination of the hyperplane is strongly connected to the
vectors sitting on the boundaries of the margin, also known as the
support vectors, which are normally computed from the adjoining area
of two rock types. For correlated porous systems like rock samples, this
could save a lot of efforts on data labelling and be advantageous for the
improvement of the computational efficiency during the model training
stage. As a discriminative model, SVM learns the mapping relationship
between the feature vector of each data point and the corresponding
label, and the overall characteristics of data distribution is scarcely
concerned. Therefore, the impact of regional window size on classifi-
cation results can be diminished. In our work, both GMM and SVM
classification were implemented in MATLAB.

2.6. Permeability

Numerical simulation of permeability in this paper is accomplished
following the method developed by Arns and Adler (Arns and Adler,
2018), which converts the Stokes flow problem into an electrical con-
ductivity problem through the approximation of velocity field using a
distance transform, and then Laplace solver is applied to derive
permeability. In this article, comparable experiments between the
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Laplace solver approach and the Lattice Boltzmann (LBM) solver have
been carried out on highly resolved subsamples and received excellent
agreement. On the other hand, for images of lower resolution where
flow path cannot be sufficiently recovered, the Laplace solver presents
higher stability. The detail description of approximation process can be
found in Section 2.b of (Arns and Adler, 2018). The derived Laplace
equation is discretized by the box integration method. Periodical
boundary conditions are applied to the three dimensions, and the dis-
cretized system is solved using the conjugate gradient algorithm. The
computation of permeability is conducted in x, y and z directions,
respectively. But in the section of results and discussion, we combine the
results from x and y directions due to the strong layering feature of the
rock sample and little variance between the results, horizontal and
vertical directions (ks and k,) are used instead in the section.

2.7. Upscaling workflow

The procedures of upscaling of permeability on a rock type field is
threefold. The first step is sampling of representative cubic subsamples
for each rock types. FFT algorithm is applied to efficiently locate the
subsamples of pure rock type over the entire image. The locations will
then be screened in the balance of overlap reduction between the sub-
samples and a larger sampling number under the restriction of the image
size. The second step is to acquire representative permeability for each
rock type. We compute the permeability of every subsample from the
same rock type using the Laplace solver approach and obtain the average
permeability values for every direction. The averaged values are later on
assigned to all the voxels belonging to this rock type, and treated as the
approximation values representing local permeability/hydraulic con-
ductivity. On this basis, we use the same discretization and solution
algorithms to obtain the permeability of the full image as introduced in

Rock-typing

LTSS
RT1
RT2
Single Multiple
subsampling subsampling

lI
Fig. 3. Flow-chart of the permeability upscaling workflow. After the rock types
(RT) are defined, two methods for the extraction of representative permeability
of each rock type are tested. Single subsampling method refers to the deter-
mination of representative permeability (KRT) computed from one maximum
cube of each rock type. Multiple subsampling method refers to the determi-
nation of representative permeability (KRT_A) averaged from multiple cubic
subsamples (the size may shrink to avoid overlapping of the cubes) of each rock
type. The representative values from different methods are then assigned to all

the voxels belonging to this rock type respectively for macroscopic permeability
computation and comparative analysis.

= }KRT_A

~a -.v'

Macroscopic
permeability
computation
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the previous section. A flow chart for the permeability upscaling
workflow is provided in Fig. 3. Since all voxels in each rock type share
the same value, the data variation of the discretized system is sharply
reduced which allows quick convergence of the mathematical solution.
This upscaling strategy through representative physical properties on
the rock type field is an efficient method to alleviate the demand for
computational resources and accelerate the computing process.

3. Results and discussion

We compared the two rock-typing algorithms (GMM and SVM) firstly
on two synthetic porous systems of different rock fabric components,
then extended the study to a natural sandstone rock sample of lamina-
tion structure.

3.1. Artificial models

Artificial sample 1 is filled by two rock types both containing sphere
shape particles, and the radii of the spheres are 13 and 26 voxels for rock
type 1 and 2, respectively. The regional Minkowski measures are
computed from the pure microstructure without Gaussian Random Field
(GRF) labels (Fig. 4(a)), and the measuring window is shaped a =b = 4c
(a, b and c are the half-axes of the window respectively in X, Y and Z
dimensions) and ¢ = 10, 20, 30, ..., 60 voxels. The distribution of the
regional Minkowski measures of sample 1 from ¢ = 20 and 60 voxels are
demonstrated in Fig. 5 (other Minkowski maps of sample 1 can be found
in SI1). The noneffective computation at the edges of the sample caused
image size shrinkage, which was determined by the size of the shifting
window. The fluctuation of the Minkowski measures at ¢ = 20 voxels is
distinctively stronger than the values obtained at 60 voxels, and the data
range is much broader. The boundaries between two rock types are
sharply delineated at ¢ = 20 voxels (except for the porosity map, which
was designed to be the same), while for the Minkowski maps of ¢ = 60
voxels, the boundary regions have grew a lot wider.

To evaluate the accuracy of the rock type classification process, the
classification maps obtained using GMM and SVM based on the Min-
kowski fields are compared with the original GRF distribution (Fig. 4(b))
voxel-to-voxel, and the results are plotted in Fig. 6. The difference be-
tween SVM1 and SVM2 comes from the composition of the model
training data. The training data of SVM1 was composed of two cubic
subsamples from the two rock types contained in the image, excluding
rock type boundary information, while the training data of SVM2 was a
2D slice of XZ plane offering the statistical information of the contact
area between the rock types. The determination of the cubic subsamples
is implemented through a convolution process using FFT. Firstly the
maximum cube size exists in both rock types is tested from the GRF map.
Then all possible locations of the cubes are recorded, and we pick the
subsamples from the middle of the sequence to constitute the training
data. For ¢ = 20 voxels, the subsamples have a side length of 110 voxels,
and for ¢ = 60 voxels, the side length is 90 voxels due to the shrinkage of
the image size after the calculation of Minkowski measures on a bigger
shifting window. The accuracy of the classification results of all three
methods peaks at ¢ = 20 voxels, then the accuracy decreases as the
window size grows. SVM2 gives the highest rock-typing accuracy at
every data point and all the accuracy values are above 94% with a peak
of 97.8%. The accuracy of SVM1 drops faster than SVM2, but still gives a
good performance of above 92% before ¢ = 60 voxels. GMM is most
sensitive to the change of regional window size and the classification
accuracy drops fast to below 80%. Graphical illustration of the classi-
fication results is presented in Fig. 7, the increase of the window size
caused much greater bias of the rock type boundaries defined by GMM
than SVM2.

The same rock-typing procedure has been applied to artificial sample
2 (Fig. 8(a)), which shares the same GRF map with sample 1 (Fig. 8(b)),
and the classification results are given in Fig. 9. The cross-sections of the
Minkowski maps can be found in SI2. All three methods give the best
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Fig. 4. X-Z slices (Y = 800) through artificial sample 1: (a) microstructure generated using Boolean model on the GRF; (b) GRF containing two classes (bright: rock

type 1, dark: rock type 2).
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Fig. 5. X-Zslices (Y = 800) of 3D Minkowski maps of sample 1. Pictures at the left column are obtained from window size ¢ = 20 voxels, the images are sized 1440 x
560 voxels; pictures at the right column are from ¢ = 60 voxels and sized 1120 x 480 voxels (V: porosity, S: surface area, M: mean curvature, X: total/

Gaussian curvature).

results at ¢ = 10 voxels due to the reduction of particle size, then the
accuracy decreases, though at different pace, as the window size grows.
SVM2 offers the accuracy of above 94% throughout the test and gives
the best result at every test point. SVM1 drops from 98% at ¢ = 10 voxels
to 89% at ¢ = 60 voxels. The classification results of GMM are heavily
affected by the change of window size and the accuracy drops rapidly to
70%. The graphical classification results are provided in SI3.

3.2. Precipice sandstone

After the tests on synthetic microstructures, we applied the two
methods to a natural sandstone sample of layered structures. The ideal
rock type distribution for the evaluation of the classification results is
provided by (Jiang and Arns, 2021), which was obtained from the
regional Minkowski maps of window size a = b = 4c=440 voxels using
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Fig. 6. The comparison of the classification accuracy of GMM and SVM on
sample 1.

GMM method. An upscaling process of permeability and electrical
conductivity of the sample has been applied upon the rock type distri-
bution and exhibited high accuracy comparing with direct computa-
tional results. Since the classification result from the Minkowski maps
acquired at ¢ = 110 voxels is used for verification, it is no longer
included in the numerical experiments. The support size of ¢ = 20, 30,
40, ..., 150 voxels (except for ¢ = 110 voxels) are contained in the test,
and regional Minkowski maps acquired at different window sizes are
displayed in Fig. 10 (other Minkowski maps of the Precipice sandstone
can be found in SI4). At a small window size like ¢ = 20 voxels, the range
of Minkowski values is much wider. Meanwhile, the distribution of the
values in space is heavily fluctuated, and the statistical contrast between

GMM
20

(a)

GMM
60

(c)
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different laminations is hard to distinguish given the canopy of the
clusters of extreme values, as shown in the first row of Fig. 10. The
second row of figures are from ¢ = 100 voxels. A larger window size
covering wider spatial structures presents comparatively smoother
transition of the characteristics, and offers clear contrast between
different regions. As the window size growth continues, we can see from
the last row of Fig. 10 the contrast of the rock types is weakened.
Although from our visual perception the layering structure maintains
still, it is hard for generative model like GMM to learn the difference
from statistical perspectives.

The two different classification algorithms were applied to the
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Fig. 9. The comparison of the classification accuracy of GMM and SVM on
sample 2.
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(d

Fig. 7. 2D graphical comparison of the rock-typing results by GMM and SVM on artificial sample 1 with Minkowski maps from ¢ = 20 and 60 voxels. The grey regions
refer to the mismatch of the rock types. The GRF (Fig. 3(b)) is overlapped by the classification maps of (a) GMM of ¢ = 20 voxels, (b) SVM2 of ¢ = 20 voxels, (c) GMM

of ¢ = 60 voxels and (d) SVM2 of ¢ = 60 voxels.

Fig. 8. X-Z slices (Y = 800) through artificial sample 2: (a) microstructure generated using Boolean model on the GRF; (b) GRF containing two classes (bright: rock

type 1, dark: rock type 2).
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Fig. 10. XZ planes (Y = 360) of 3D Minkowski maps of the Precipice sandstone. (a-d): the Minkowski maps from the window size of ¢ = 20 voxels, and the 3D image
sizes are 900 x 900 x 2800 voxels; (e-h): ¢ = 100 voxels and the 3D image sizes are 900 x 900 x 2800 voxels; (i-1): ¢ = 150 voxels and the image sizes are 900 x 900
x 2720 voxels. The shrinkage from Z direction is from the regional computation process.
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Minkowski maps. Moreover, we added another kind of SVM model
training method (i.e. SVM3) which uses 10 XZ layers with a spacing of 4
layers between every two consecutive layers as the input. The classifi-
cation results from the different methods are compared in Fig. 11. The
results of GMM on ¢ = 140 &150 voxels are not available because GMM
failed to divide the data into different groups from the corresponding
feature maps. The growth of window size has generally brought higher
accuracy for all methods in the test. SVM3 delivers the best classification
results: the accuracy tops 90% after ¢ = 70 voxels and maintains over
95% since ¢ = 100 voxels. The classification results of SVM2 is very close
to SVM3 despite reduced training data size. SVM1 couldn’t recover the
rock type distribution appropriately due to the lack of boundary infor-
mation. Comparing with artificial samples, the lack of boundary infor-
mation has caused severe impact on the classification results of the
natural sandstone through SVM, as the transition between rock types
formed by the sedimentary and diagenesis process is much less abrupt
and thus harder to define. GMM exhibited poor performance at smaller
window sizes, and slight fluctuation appears at the front is caused by the
gradual filling of the isolated rock type clusters in the mismatched re-
gion as shown in Fig. 12. The increase of regional window size has
helped the rock-typing performance, and the accuracy rises above 88%
from ¢ = 90 to ¢ = 130 voxels. However, GMM failed to classify the
structural type since ¢ = 140 voxels because of the weak contrast of
structural characteristics between the rock types, whereas SVM method
can still deliver high accuracy.

3.3. Upscaling of permeability

After the rock type classification, representative physical properties
for each rock type need to be determined and assigned to the corre-
sponding region for the preparation of full image upscaling. Two
different methods were applied at this stage. In the first method, one
subsample of 600° voxels (the biggest cube available for both rock types)
was selected for each type. ky and k, of the subsamples were computed
and directly utilized for the upscaling process. In the second method,
thirteen 500° subsamples were picked up for each rock type after
screening through an interval of 200 voxels (limited by the image size of
900 voxels at x and y directions) at each direction. Average values for ky
and k, from the 13 subsamples were used for the upscaling process. The
comparison of the physical properties of the rock types from the two
different methods can be found in Table 2. We use the rock type clas-
sification results from the regional support size of ¢ = 130 voxels with an
accuracy of 96%. The subsamples of rock type 1 are extracted from the
blue region as shown in Fig. 12, and the subsamples of rock type 2 are
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Fig. 11. The comparison of the classification accuracy of GMM and SVM on
Precipice sandstone.
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extracted from the red region. The permeability and porosity values of
method 1 fall into the range of method 2 but are deviated from the
average. The porosity values of both rock types are quite close to each
other, while the permeability values are one order of magnitude
different.

The representative permeability values of the rock types from these
two methods were then assigned to the corresponding regions, and
upscaling from the rock type field was complemented respectively
following the workflow introduced in Section 2.7. The results from the
upscaling process were compared to direct computation of the full image
as shown in Table 3, and the direct computation of the permeability of
the full image is accomplished using the same Laplace solver approach
introduced in the Section 2.6. Both methods yield results of excellent
accuracy, but upscaling from method 2 using average permeability
values presents noticeably higher accuracy of over 94% comparing with
method 1. During the upscaling procedure, averaging over multiple
subsamples would be a better choice if minor heterogeneity exists inside
the rock types. On the other hand, Method 1 provides satisfactory
upscaling results with lower computational cost.

3.4. Computational efficiency

During the practice of SVM classification, we have noticed the model
training process was quite time consuming. Considering the robust
discriminative ability of SVM, we decided to run a series of tests on the
training of SVM model using the same training data set but down-
sampled by different scale, and observe the influence on the accuracy of
rock-typing process. We have downsized the training data of 10 XZ
layers to its 1/10th, 1/100th and 1/1000th by uniformly picking up data
points at a required interval from the whole set. The tests were carried
out on the Minkowski maps derived from the support size of ¢ = 100
voxels (a = b = 4c) using single CPU core, and the results are collected in
Table 4. The reduction in data size could greatly accelerate the speed of
the construction of the discriminative model by up to 6 orders of mag-
nitudes and the model training can be finished within half second, while
the accuracy of the rock type classification is not detracted at all.
Stronger applicability has thus been exhibited for SVM rock-typing with
the economization on both time and computational resources. In addi-
tion, the speed increase would be more distinct when more than 2 rock
types are trained using this approach, while the downsampling of the
training data should be reduced for better rock type classification
performance.

3.5. Location of the model training dataset

We have also analysed the impact of the location of the training data
on the classification results based on the digital image of the laminated
sandstone. Across the Y dimension of the sample, we picked up 5
different locations (1/5th, 2/5th, 1/2nd, 3/5th and 4/5th of the whole
length) to be the starting layer of the training data (using 10 spaced
layers as a training set) for SVM3. The tests were carried out on the
Minkowski maps from support size of ¢ = 90 & 100 voxels, and the
training data were downsized to its 1/1000th for computational effi-
ciency. The classification results are listed in Table 5. Both groups have
manifested excellent rock-typing results from all 5 training sets, and the
variance of the accuracy is within 3%. Nevertheless, both groups have
obtained the best results from the 3/5th of the length of Y dimension. As
can be seen from Fig. 2, the Precipice sandstone is laminated along the Z
dimension, implicating strong structural correlation of the cross-sections
at both X and Y directions. As long as the constituting layers of the
training data are perpendicular to the lamination, the variance brought
by the position of the layers can be neglected for fast computation,
which has also facilitated the preparation of the training dataset.
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Fig. 12. The recovered rock type distribution through GMM and SVM3 method on the Minkowski maps from different support sizes. (a): GMM classification on the
support size of ¢ = 20 voxels; (b) GMM classification on ¢ = 100 voxels; (c) GMM classification on ¢ = 150 voxels; (d) SVM3 classification on ¢ = 20 voxels; () SVM3
classification on ¢ = 100 voxels; (f) SVM3 classification on ¢ = 150 voxels.
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Table 2
The permeability and porosity values of the two rock types (k in units of Darcy).
Starting position kn ky, @
Method 1 RT1 6.41 6.02 0.189
RT2 0.857 0.676 0.160
Method 2 RT1 7.764+1.630 6.176+2.311 0.181+0.014
RT2 1.000+0.107 0.729+0.093 0.165+0.007
Table 3
The results of permeability upscaling on the full image (k in units of Darcy).
Scenario kp k,
Direct computation 4.40 1.47
Method 1 3.94(—10.5%) 1.37(—6.80%)
Method 2 4.65(+5.68%) 1.45(—1.36%)
Table 4

The results of rock type classifications through SVM3 using downsized training
dataset on the Minkowski maps from the support size of ¢ = 100 voxels (using
one CPU core).

Sandstone (¢ = 100 voxels) 1 1/10th 1/100th 1/1000th
Classification accuracy 0.9512 0.9543 0.9561 0.9522
Model training time/s 17,813.28 289.80 6.47 0.36

Table 5
The classification results of ¢ = 90 & 100 voxels through SVM3 using training
data from different locations along Y direction.

Starting position 1/5th 2/5th 1/2th 3/5th 4/5th
Accuracy (¢ = 100 voxels) 0.9254 0.9336 0.9435 0.9522 0.9457
Accuracy (c = 90 voxels) 0.9142 0.9230 0.9277 0.9348 0.9261

4. Conclusions

In this work, we used Minkowski functionals as the morphological
and topological descriptors of the complex microstructures. Fast
computation of the 3D Minkowski maps is realized via a previously
developed FFT method. Two partitioning methods of GMM and SVM are
compared for the rock type classification from the maps of the
descriptive parameters. Based on the rock type distribution, upscaling of
permeability is practiced on the digital image of a natural laminated
sandstone. Following conclusions are drawn from the study:

(1) The size of the regional support has significant impact on the
descriptive abilities of the morphological and topological
parameters.

(2) The rock type classification results using traditional unsupervised
data clustering methods like GMM are heavily dependent on the
description of the regional parameters and show high sensitivity
to the change of the support size.

(3) Supervised classification method SVM has presented much higher
accuracy with strong stability towards the variation of the sup-
port size during the rock type classification process. The strong
discriminative abilities of SVM and innate structural correlation
of the microstructures allow light preparation of data labelling for
the model training process, which have also enabled the escala-
tion of computational efficiency.

Upscaling of permeability on the rock type distribution achieves a

high accuracy of 94% comparing with the results of direct nu-

merical simulation on the full image, illustrating good potential
for efficient physical property estimation on broader range.

(4

-

With carefully defined rock types, the trade-off of image resolution

11
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and FOV between the multi-resolution computational tomograms of a
core plug may become complementary instead. If rock types on different
resolutions could be accurately recognized, upscaling of physical prop-
erty on core scale could be achievable, which is also the future
endeavour of the authors. As the physical length of this upscaling
approach reaches centimeter scale, comparative analyses can be con-
ducted between image-based numerical results and laboratory mea-
surements, and link further to the information of on-site logging data
with advanced methodological and computational support. For rocks
with higher level of heterogeneity such as shale, recognition of the
laminations especially those similar to each other, could be very bene-
ficial for analytical efficiency and theoretical advancement, while the
determination of characteristic physical properties requires more deli-
cate treatment.
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