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Outline

1. Multiscale porous materials and research challenges

2. Two hybrid numerical models for multiscale digital rocks

3. Predictions of single-phase and two-phase flow parameters

4. Conclusions and outlook
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Multiscale porous materials across different applications

Hierarchical pore structure of bone tissue (Adv. Funct. 

Mater. 2021, 31, 2010609)

Hierarchical pore structure of catalysts (Electrochem. Energ. Rev. 2023, 6, 13)

Hierarchical pore structures of shale
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Research challenges for flow and transport 

❑ How do multiscale pore structures regulate flow and transport?

❑ The role of wettability in flow and transport, and how to control wettability?

MAPS of shale

1 um

Qz

OM

Nature, 2021

Combine wettability and multiscale pore structures?
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Outline
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2. Two hybrid numerical models for multiscale digital rocks

3. Predictions of single-phase and two-phase flow parameters
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Characterization of pore structures

Hybrid numerical models

Predict flow and transport processes 
Material properties



subresolution

Macropore

Digital Core Analysis (DCA) – multiscale pore structures
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Nubian sandstone

Subresolution 

microporosity

Estaillades carbonate

VOF modeling of water imbibition, 

100×100×200 image

900×900

×2000 

image

Dynamic pore-network 

modeling of cocurrent 

spontaneous imbibition

(Qin et al., AWR, 2021)

100 µm

(Qin et al., TiPM, 2025)
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4 µm

Flow and transport
❑ Quasi-static or dynamic  

two-phase flow

❑ Reactive flow and 

transport

❑ Non-Newtonian fluid 

flow

❑ Mineral precipitation 

and dissolution

❑ And so on.

Extract pore 

networks

7

Pore-network models – between DNS and continuum
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Numerical models for multiscale porous media

Dual-pore-network 

model (DPNM)

Micro-continuum 

model (MCM)

Pore-network-

continuum model 

(PNCM)

Multiscale pore-

network model 

(MPNM)

Mehmani, 2014
Soulaine, 2023 Qin, 2024

❑ The MPNM is most efficient, but its verification is missing.

❑ The PNCM can balance efficiency and accuracy.
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The multiscale pore-network model (MPNM)

1. Modeling of permeability and formation factor of carbonate digital rocks: dual-pore-network and 

pore-network-continuum models. Transport in Porous Media, 152:37, 2025

2. Modeling of flow and transport in multiscale digital rocks aided by grid coarsening of microporous 

domains. Journal of Hydrology, 633:131003, 2024
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Pore-network-continuum model – coarsening algorithm
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Characterization of ES6.5 microporosity

(Wang et al., WRR, 2022)

potassium iodide 

saturated

Porosity map Entry pressure mapCT grey-scale map

Solid

Microporosity

6.5 µm, 1316×1316×1087 voxels



Estaillades carbonate rock：pore structures and mesh
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4003的测试岩心

Computational mesh for the PNCM modeling 

https://www.digitalrocksportal.org/

https://www.digitalrocksportal.org/
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Outline

1. Introduction of multiscale pore-network model

2. Predictions of absolute permeability and formation factor

3. Predictions of capillary pressure and relative permeability

4. Conclusions and outlook
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The importance of pc and kr
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The average operation of pore sizes of microporosity in MPNM

① Average based on 

sphere-assumption

② Average based on 

voxel-counting

③ Entry-pressure-based 

sub-rock typing (Wang 

et al., 2022)

Estimation of microporosity 

permeability distribution

①

②

③
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Why do we need the sub-rock typing?
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❑ The sub-rock typing helps with the prediction, but the CT-based 

characterization is costly and time-consuming！

❑ If only the MICP data is used, the correlation of pore sizes should be taken 

into account.

Randomly generated
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Review the model setup (4003 sub-volume of ES6.5)

Nonwetting saturation [-]
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Capillary pressure curve predicted by the PNCM
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Randomly distributed pore 

sizes in microporosity

The  PNCM can well predict 

the curve

Real one
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Capillary pressure curve by the MPNM
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① Average based on sphere-assumption

Overestimation
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③ Entry-pressure-based 

sub-rock typing (Wang 

et al., 2022)

② Average based on voxel-counting

❑ The sub-rock typing is essential to the efficient multiscale pore-network model.

❑ 4003 size is adequate to the prediction of capillary pressure curve.
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Capillary pressure (the full image of ES6.5)
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Relative permeability (the full image of ES6.5)



10/8/2025 22

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
 Primary drainage-Krw

 Primary drainage-Krnw

 Main imbibition-Krw

 Main imbibition-Krnw

Sw

K
r

Shift to the left

Relative permeability (the full image of ES6.5)



10/8/2025 23

Outline

1. Introduction of multiscale pore-network model

2. Predictions of absolute permeability and formation factor

3. Predictions of capillary pressure and relative permeability

4. Conclusions and outlook
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Conclusions and outlook

Conclusions

❑ A high-efficient multiscale pore-network model (MPNM) is developed, and 

verified against the high-resolution pore-network-continuum model (PNCM).

❑Microporosity of ES rocks has strong heterogeneity of mean pore sizes.

❑ Three types of averaging microporosity voxels are tested. It is found that the 

sub-rock typing is necessary to guarantee the reliable predictions of both 

single-phase and two-phase flow parameters.

❑We can well predict absolute permeability, formation factor, capillary pressure 

and relative permeability.

Outlook

❑ Advance the modeling framework to two-phase flow dynamics.

❑ Understand how microporosity influences material properties, and extend 

capillary pressure and relative permeability empirical models.

❑ Seek for more applications and collaborations.



Multiphysics Multiscale Digital Rock Simulator (MMDRS) 
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多物理多尺度
数字岩心求解器

结构化
孔隙网络生成器

非结构化
孔隙网络生成器

基于PoreSpy
提取数字岩心
孔隙网络

分水岭+正中面+中轴
线法提取数字岩心孔

隙网络

设置求解器：
一个或多个
模块耦合

后处理
（PARAVIEW, MATLAB）

多组分反应流动

地球化学反应
（PHREEQC）

动态两相
驱替和渗吸

热计算
及相变

驱替和渗吸
准静态两相

孔隙结构演变

耦合达西和
斯托克斯流动

孔隙网络-连续介质
混合模型

多级可控多尺度数字
岩心计算网格粗化

多重孔隙网络生成器

多尺度
孔隙网络模型
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Research challenges for flow and transport 

Design of porous anode current collectors

Reduce Na dendrites
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Test samples of carbonate digital rocks

Digital 

rock

Voxel 

size (μm)
Microporosity Image size (voxels)

Total 

Porosity  

(%)

Absolute 

permeability (mD)

Experimental

ES3.1 3.1
Uniform mean 

pore size
2000×2000×1725 25 260 ± 60

ES3.6 3.6
Uniform mean 

pore size
1000×1000×1000 29 /

ES6.5 6.5 Heterogeneous 1316×1316×1087 25 202.4 ± 86.9

https://www.digitalrocksportal.org/

ES3.1 and ES3.6 have the MICP curves; ES6.5 has 

the porosity map and the entry-pressure map of 

subresolution microporosity.  
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Predictions of absolute permeability and formation factor

Subvolume of 

digital rock
Pore regions

Original 

voxels
Volume fraction In the MPNM In the PNCM

ES3.1

Macropores 6332318 9.9% 3569 3569

Microporosity 21562493 33.7% 8375 3929815

ES3.6

Macropores 5040267 7.9% 2172 2172

Microporosity 32676964 51.1% 13228 4494989

ES6.5

Macropores 3694907 5.8% 3827 3827

Microporosity 40618405 63.5% 7930 4147069

90% 

reduction in 

computational 

grids

Digital rock
Mean pore size 

(µm)

By the MPNM 

(mD)
By the PNCM (mD)

By the reference 

model (mD)

ES3.1 0.61 109 116 117

ES3.6 0.74 34 37 37

ES6.5-1 1.81 28 18 18

ES6.5-2
Estimated by 

entry pressure
12 128 174

Why does the MPNM 

underestimate the 

absolute permeability? 

Digital rock
By the multiscale pore-

network model (-)

By the pore-network-

continuum model (-)
By the reference model (-)

ES3.1 17.24 19.61 19.23

ES3.6 23.81 23.81 23.26

ES6.5 18.52 20.41 19.23

The prediction of 

formation factor is 

satisfied 


