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Il Multiscale porous materials across different applications
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ll Research challenges for flow and transport

|
O How do multiscale pore structures regulate flow and transport?

O The role of wettability in flow and transport, and how to control wettability?

Combine wettability and multiscale pore structures?
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Bl Digital Core Analysis (DCA) — multiscale pore structures

Nubian sandstone VOF modeling of water imbibition,
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Bl Pore-network models — between DNS and continuum

Flow and transport
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Pore-scale imaging and modelling

Martin J. Blunt®*, Branko Bijeljic®, Hu Dong”, Oussama Ghar
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* Department of Earth Science and Engineering, imperial College, London SW7 2AZ, UK
YiRack Technologies, Suite 1103, Tower A, Oriental Media Center, No. 4 Guanghua Road, Chaoyang Dist
“ Department of Petroleum Engineering, Curtin University, 6151 Perth, Australia

it is difficult to resolve thin wetting layers that control many pro-
cesses in two and three-phase flow [1,7,8]; this limitation is dis-
cussed further at the end of the paper. In the literature to date,
the most computationally efficient and successful predictions of
multiphase flow come from network modelling, described below.
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Bl Numerical models for multiscale porous media

Pore-network- Multiscale pore-
continuum model network model

Dual-pore-network Micro-continuum
model (DPNM) model (MCM)

AP T

hybrid-scale ,,
Mehmani, 2014 Soulaine, 2023 Qin, 2024

 The MPNM is most efficient, but its verification is missing.

[ The PNCM can balance efficiency and accuracy.
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Bl The multiscale pore-network model (MPNM)
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Modeling of permeability and formation factor of carbonate digital rocks: dual-pore-network and
pore-network-continuum models. Transport in Porous Media, 152:37, 2025

Modeling of flow and transport in multiscale digital rocks aided by grid coarsening of microporous ¢
domains. Journal of Hydrology, 633:131003, 2024



Il Pore-network-continuum model — coarsening algorithm
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Bl Characterization of ES6.5 microporosi
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Jl| Estaillades carbonate rock: pore structures and mesh

https://www.digitalrocksportal.org/
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Bl The importance of pcand k,

p¢ can infer pore-size distributions of porous media
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O Micropores

O Macropores

I
1
I
|
|
I A Macro+Micro
I
I
I
I
1

g
2 1
& 0A Resolv_ed pore
Op £ in CT images
01 Oo Op E I
I
0.01 ] !
00 02 04 06 08 1.0
$" ()
0.45
(b) MICP
O Macropores
O Micropores
? 0.30+
=
3
Y 0.15¢
OOO < = = I CRATEED
0.01 0.1 1 10

10/8/2025

Pore throat diameter (um)

Wetting reservoir

Drainage

Non-wetting reservoir

0 02 0.4 0.6 0.8 1
Sy ()
0 0.2 04 0.6 0.8 1
Sw ()
0 0.2 04 0.6 0.8 1
S ()
14



Il The average operation of pore sizes of microporosity in MPNM

Estimation of microporosity
permeability distribution
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Il Why do we need the sub-rock typing?
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U The sub-rock typing helps with the prediction, but the CT-based
characterization is costly and time-consuming !

O If only the MICP data is used, the correlation of pore sizes should be taken

into account.
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Il Review the model setup (4003 sub-volume of ES6.5)
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Bl Capillary pressure curve predicted by the PNCM
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Bl Capillary pressure curve by the MPNM

>

(D Average based on sphere-assumption

-
-

10° -

Overestimation

10°
= ]
o
a
10* E
: DPNM
1 |——PNCM
A Drainage experimentDNang etal., 2022]
10° . ———
0.0 0.2 0.4 0.6 0.8 10
SW

(3 Entry-pressure-based
sub-rock typing (Wang
+ etal., 2022)

6
10°5 ,
7
1
A
5 |
10° N
T ] ,
a I
Q '
)
1
4
10 3 |
{ |~ DPNM-five micropore radius ‘.
:’DPNM—math average \
A !'Drainage experiment[\Vang etal., 2022]
103 ,' T T T T T T
0.0 /0.2 0.4 0.6 0.8 1.0
1 SW
I

v
(2 Average based on voxel-counting

O The sub-rock typing is essential to the efficient multiscale pore-network model.

[ 4003 size is adequate to the prediction of capillary pressure curve.




|| Capillary pressure (the full image of ES6.5)
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Bl Relative permeability (the full image of ES6.5)
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Bl Relative permeability (the full image of ES6.5)
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Bl Conclusions and outlook

Conclusions

O A high-efficient multiscale pore-network model (MPNM) is developed, and
verified against the high-resolution pore-network-continuum model (PNCM).

O Microporosity of ES rocks has strong heterogeneity of mean pore sizes.

O Three types of averaging microporosity voxels are tested. It is found that the
sub-rock typing is necessary to guarantee the reliable predictions of both
single-phase and two-phase flow parameters.

O We can well predict absolute permeability, formation factor, capillary pressure
and relative permeability.

Outlook
1 Advance the modeling framework to two-phase flow dynamics.

O Understand how microporosity influences material properties, and extend
capillary pressure and relative permeability empirical models.

(] Seek for more applications and collaborations.
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Il Multiphysics Multiscale Digital Rock Simulator (MMDRS)
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Bl Research challenges for flow and transport
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|| Test samples of carbonate digital rocks

https://www.digitalrocksportal.org/

Total Absolute

\Voxel
size (num)

Microporosity | Image size (voxels) Porosity | permeability (mD)

(%) .
Experimental

ES3.1 31 Uniform mean

oore size 2000x2000x1725 25 260 + 60
Uniform mean
ES3.6 3.6 pore size 1000%x1000x1000 29 /
ES6.5 6.5 Heterogeneous  1316x1316x1087 25 202.4 +£ 86.9

The por05|ty map of ESG 5

ES3.1 and ES3.6 have the MICP curves: ES6.5 has

the porosity map and the entry-pressure map of

subresolution microporosity.
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https://www.digitalrocksportal.org/

Il Predictions of absolute permeability and formation factor

e LICH regions Original Volume fraction In the MPNM In the PNCM
dlgltal rock voxels
90%

Macropores 6332318 9.9% 3569 3569
ES3 1 Microporosity 21562493 33.7% 8375 3929815 reduction in
Macropores 5040267 7.9% 2172 2172 computational
Microporosity 32676964 51.1% 13228 4494989 grids

Macropores 3694907 5.8% 3827 3827
ES6.5 Microporosity 40618405 63.5% 7930 4147069
Mean pore size | By the MPNM By the reference

Why does the MPNM — Ess1 G

underestimate the 0.74 34 37 37
1.81 28 18 18

absolute permeability? .
entry pressure
By the multiscale pore- By the pore-network-
network model (-) continuum model (-) E IS ECETESTEE () The predlctlon Of

ES3 1 17.24 19.61 19.23 formation factor is

ES3.6 23.81 23.81 23.26 Satlsfled
ES6.5 18.52 20.41 19.23
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