## ASCHT2025

The 10<sup>th</sup> Asian Symposium on Computational Heat Transfer and Fluid Flow-2025

## CONFERENCE BROCHURE



October 9-13, 2025, Wuhan, China

## CONTENT

| Welcome               | 1  |
|-----------------------|----|
| Important Information | 6  |
| Plenary Lectures      | 11 |
| Keynote Lectures      | 17 |
| Invited Talks         | 38 |
| Conference Program    | 39 |
| About the Traffic     | 74 |

#### Welcome

Dear Sir/Madam,

Under the dedicated guidance of Professor Mamoru Tanahashi (Institute of Science Tokyo, Japan), Professor Gui-Hua Tang (Xi'an Jiaotong University, China), and Professor Gihun Son (Sogang University, Korea), with the help of Professor Li Chen (Xi'an Jiaotong University, China), I have been honored to host the 10th Asian Symposium on Computational Heat Transfer and Fluid Flow (ASCHT2025). It is my great pleasure in welcoming you to attend this important event in Wuhan (October 9-13, 2025). We would like to



thank all the special guests, invited speakers and sponsors for their generous support.

This conference aims to provide a common forum to exchange new ideas and creations in recent advances on heat transfer and fluid flow theories, analyses, and applications of computational methods. The attendees are prestigious scientists and engineers from Asia as well as other parts of the globe, who work closely on algorithms and applications in theoretical and engineering thermo-fluid science. It is anticipated that ASCHT2025 will provide an opportunity to stimulate further research and collaborations among the investigators in the field of thermo-fluid science and engineering.

There are 16 sessions in the ASCHT2025, containing 4 plenary lectures, 14 keynote lectures, 33 invited talks, 140 oral presentations and 21 posters. These sessions cover extensive themes, including computational multi-component and multiphase flow, flow and heat transfer control, heat and mass transfer in porous media, inverse problem, modelling and optimization, heat exchanger and industrial heat transfer, computational heat transfer and fluid dynamics, micro and nanoscale heat and mass transfer, energy and environment, computer simulations of reacting flows, multi-scale simulation of heat transfer and mass transfer, numerical methods in multi-physics modeling, supercritical CO2 and its applications, energy storage and saving, thermal management on electronic device, transport phenomenon in porous media, and AI in computational heat transfer and fluid dynamics. Special issues of selected articles presented in the ASCHT2025 will be published in three international journals: International Journal of Heat and Fluid Flow, Advances in Applied Mathematics and Mechanics, and International Journal of Computational Fluid Dynamics.

On behalf of the ASCHT2025 committee, I sincerely appreciate your participation in the Conference. We will devote every effort to making ASCHT2025 an outstanding platform for academic exchange.

I wish you all a successful and beneficial meeting!

Sincerely yours,
Zhaoli Guo, Professor
Chair, Local Organizing Committee
Huazhong University of Science and Technology

Zhaoli Guo

### **Organizing Committee**

#### Founding Chair:

Tao, Wen-Quan (Xi'an Jiaotong University, China)

#### **Chairs:**

Tang, Gui-Hua (Xi'an Jiaotong University, China)
Son, Gihun (Sogang University, Korea)
Mamoru Tanahashi (Institute of Science Tokyo, Japan)

### **Local Organizing Comittee**

#### **General Chair:**

Guo, Zhaoli (Huazhong University of Science and Technology, China)

#### Co-Chairs:

Feng, Guang (Huazhong University of Science and Technology, China) Chai, Zhenhua (Huazhong University of Science and Technology, China) Meng, Xuhui (Huazhong University of Science and Technology, China)

#### **General Secretary:**

Liu, Xiuliang (Huazhong University of Science and Technology, China)
Xie, Mingliang (Huazhong University of Science and Technology, China)
Zhou, Xiafeng (Huazhong University of Science and Technology, China)
Zhang, Yue (Wuhan Institute of Technology, China)
Liu, Xi (Huazhong University of Science and Technology, China)

### International advisory committee

Abe, Kenichi (Kyushu Univ., Japan)

Ahn, Joon (Kookmin Univ., Korea)

Balaji, Chakravarthy (IIT Madras, India)

Chen, Chaokuang (National Cheng-Kung Univ., Taiwan, China)

Chen, Li (Xi'an Jiaotong Univ., China)

Chen, Min (Tsinghua Univ., China)

Choi, Hyounggwon (Seoul National Univ. of Sci. and Tech., Korea)

Choi, Jungil (Yonsei Univ., Korea)

Fukagata, Koji (Keio Univ., Japan)

Fukudome, Koji (Tokyo Univ. Sci., Japan)

Fukushima, Naoya (Tokai Univ., Japan)

Gong, Liang (China Univ. of Petroleum, China)

Gotoda, Hiroshi (Tokyo Univ. of Sci., Japan)

Guo, Zhaoli (Huazhong Univ. of Sci. and Tech., China)

Ha, Manyeong (Pusan National Univ., Korea)

Hasegawa, Yosuke (The Univ. of Tokyo, Japan)

Hattori, Hirofumi (Nagoya Institute of Tech., Japan)

He, Yaling (Xi'an Jiaotong Univ., China)

Hirota, Masafumi (Mie Univ., Japan)

Iwamoto, Kaoru (Tokyo Univ. of Agricul. and Tech., Japan)

Juntasaro, Ekachai (King Mongkut's Univ., Thailand)

Juntasaro, Varangrat (Kasetsart Univ., Thailand)

Kajishima, Takeo (Shikoku Polytechnic College, Japan)

Kang, Seongwon (Sogang Univ., Korea)

Kim, Heuydong (Andong National Univ., Korea)

Ko, Sungho (Chungnam National Univ., Korea)

Kuwata, Yusuke (Osaka Metropolitan Univ., Japan)

Kaneda, Masayuki (Osaka Metropolitan Univ., Japan)

Kawaguchi, Yasuo (Tokyo Univ. of Science, Japan)

Lee, Bokjik (Seoul National Univ., Korea)

Lee, Changeon (Inha Univ., Korea)

Lee, Jaehwa (Ulsan National Institute of Sci. and Tech., Korea)

Lee, Youngho (Korea Maritime and Ocean Univ., Korea)

Lee, Yeonwon (Pukyung Univ., Korea)

Lin, Chaoan (National Tsing Hua Univ., Taiwan, China)

Lu, Xiyun (Univ. of Sci. and Tech. of China, China)

Luo, Kun (Zhejiang Univ. Hangzhou, China)

Matsubara, Koji (Niigata Univ., Japan)

Mamori, Hiroya (The Univ. Electro-Comm., Japan)

Muralidhar, Krishnamurthy (IIT Kanpur, India)

Myong, Rhoshin (Gyeongsang National Univ., Korea)

Ni, Mingjiu (Univ. of Chinese Academy of Sci., China)

Nakabe, Kazuyoshi (Kyoto Univ., Japan)

Nishida, Hidetoshi (Kyoto Institute of Tech., Japan)

Park, Soohyung (Konkuk Univ., Korea)

Park, Youncheol (Cheju National Univ., Korea)

Qiu, Huihe (Hong Kong Univ. of Sci. and Tech., Hong Kong, China)

Rhee, Shinhyung (Seoul National Univ., Korea)

Shin, Seungwon (Hongik Univ., Korea)

Shiomi, Junichiro (The Univ. of Tokyo, Japan)

Shu, Chang (National Univ. of Singapore, Singapore)

Suzuki, Hiroshi (Kobe Univ., Japan)

Sun, Shuyu (King Abdullah Univ. of Sci. and Tech., Arabia)

Shibahara, Masahiko (Osaka Univ., Japan)

Tanahashi, Mamoru (Institute of Science Tokyo, Japan)

Tsukahara, Takahiro (Tokyo Univ. of Science, Japan)

Tatsumi, Kazuya (Kyoto Univ., Japan)

Um, Sukkee (Hanyang Univ., Korea)

Wang, Liangbi (Lanzhou Jiaotong Univ., China)

Wang, Zhifeng (Chinese Academy of Sci., China)

Xu, Kun (Hong Kong Univ. of Sci. and Tech., Hong Kong, China)

Xuan, Yimin (Nanjing Univ. Sci. and Tech., China)

Yang, Jawyen (National Taiwan Univ., Taiwan, China)

Yang, Mo (Univ. of Shanghai for Sci. and Tech., China)

Yang, Wenming (National Univ. of Singapore, Singapore)

Yu, Bo (Beijing Inst. Petrochemical Tech., China)

Yee, Kwanjung (Seoul National Univ., Korea)

Zhao, Tianshou (Hong Kong Univ. Sci. and Tech., Hong Kong, China)



### **Member of Conference affairs**

#### **General Coordinator:**

Chai, Zhenhua 138 7122 3404

Registration:

Zhang, Yue 134 2989 6530

Liu, Xi 138 7157 3271

**Conference Venue:** 

Zhou, Xiafeng 158 2715 8769

Liu, Xiuliang 176 1277 1006

Traffic:

Meng, Xuhui 150 7249 8631

**Banquet and Accommodation:** 

Chai, Zhenhua 138 7122 3404

Xie, Mingliang 132 7704 0393



## **Important Information**

## **On-site Registration**

| October 09 | Thursday | 8:00-22:00<br>(Beijing Time) | Optics Valley Kingdom Plaza Hotel<br>Wuhan |
|------------|----------|------------------------------|--------------------------------------------|
| October 10 | Friday   | 8:00-22:00<br>(Beijing Time) | Optics Valley Kingdom Plaza Hotel<br>Wuhan |

### **Conference Venue**

| Optics Valley Kingdom Plaza Hotel Wuhan | No.1 Wujiawan, Hongshan,   |  |
|-----------------------------------------|----------------------------|--|
|                                         | Wuhan, Hubei, China 430074 |  |

### **Schedule**

| O-t-100 The         | Thursday    | 08:00-22:00 | Registration                                       |
|---------------------|-------------|-------------|----------------------------------------------------|
| October 09 Thursday |             | 17:30-20:00 | Dinner                                             |
|                     |             | 08:00-08:30 | Opening Ceremony                                   |
| October 10 Friday   |             | 08:30-12:00 | Plenary Lecture Session                            |
|                     | 12:00-13:30 | Lunch       |                                                    |
|                     |             | 13:30-18:00 | Parallel Session Report (Session 1, 3-1, 4-1, 6-1) |
|                     |             | 18:30-20:30 | Dinner                                             |
| October 11 Saturday |             | 08:00-12:00 | Parallel Session Report (Session 2-1, 9, 10)       |
|                     | Catamalan   | 12:00-13:30 | Lunch                                              |
|                     | Saturday    | 13:30-18:00 | Parallel Session Report (Session 2-2, 3-2, 7)      |
|                     |             | 18:00-20:30 | Dinner                                             |
| October 12          | Sunday      | 08:00-12:00 | Parallel Session Report (Session 4-2, 5, 8-1)      |
|                     |             | 12:00-13:30 | Lunch                                              |
|                     |             | 13:30-18:00 | Parallel Session Report (Session 3-3, 6-2, 8-2)    |
|                     |             | 18:00-20:30 | Award & Closing Ceremony                           |
|                     |             |             |                                                    |



### **Award**

The best papers and best posters will be selected for recognition in **Award & Closing Ceremony** session.

### **QR Code**



Quick registration



Online Conference Program



## **Agenda Overview**

### Day2: October 10, 2025 (Beijing Time)

| Time                                                                | Schedule                                                                                                                           |                                                                      |                                                                             |                                                                                     |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------|
| 08:00 - 08:30                                                       | Opening Ceremony, Kingdom Ballroom, 3F                                                                                             |                                                                      |                                                                             |                                                                                     |
|                                                                     | Plenary Lecture Session, Kingdom Ballroom, 3F                                                                                      |                                                                      |                                                                             |                                                                                     |
|                                                                     | Chairs: Gihun Son & Mamoru Tanahashi                                                                                               |                                                                      |                                                                             |                                                                                     |
| 08:30 - 09:15                                                       | Ultimate heat transfer in convective and sheared turbulence                                                                        |                                                                      |                                                                             |                                                                                     |
|                                                                     | Genta Kawahara (University of Osaka, Japan)                                                                                        |                                                                      |                                                                             |                                                                                     |
| 09:15 - 10:00                                                       | Direct simulation of drop impact phenomena including complex interfacial multi-physics                                             |                                                                      |                                                                             |                                                                                     |
|                                                                     |                                                                                                                                    | Seungwon Shin (H                                                     | ongik University, Kore                                                      | a)                                                                                  |
| 10:00 - 10:30                                                       | Coffee Break                                                                                                                       |                                                                      |                                                                             |                                                                                     |
| Modeling and Computation of Multiscale Transport: From Rarefied Flo |                                                                                                                                    |                                                                      |                                                                             | m Rarefied Flow to                                                                  |
| 10:30 – 11:15                                                       | <b>Turbulence</b> Kun Xu (Hong Kong University of Science and Technology, China)                                                   |                                                                      |                                                                             |                                                                                     |
| 11:15 – 12:00                                                       | Two independent theories to explain coloration in supercritical fluids  Jinliang Xu (North China Electric Power University, China) |                                                                      |                                                                             |                                                                                     |
|                                                                     |                                                                                                                                    |                                                                      |                                                                             |                                                                                     |
| 12:00 - 13:30                                                       | Buffet Lunch                                                                                                                       |                                                                      |                                                                             |                                                                                     |
| 13:30 - 18:00                                                       | Yellow Crane<br>Room                                                                                                               | Kingdom Ballroom<br>1#, 3F                                           | Kingdom Ballroom<br>2#, 3F                                                  | Kingdom Ballroom<br>3#, 3F                                                          |
|                                                                     | Session 1:<br>Computer<br>simulations<br>for reducing<br>CO2 emission                                                              | Session 3-1:<br>Computational<br>heat transfer and<br>fluid dynamics | Session 4-1:<br>Computational<br>multi-component<br>and multiphase<br>flows | Session 6-1:<br>Numerical methods<br>in multiscale and<br>multi-physics<br>modeling |
|                                                                     | Coffee Break                                                                                                                       |                                                                      |                                                                             |                                                                                     |
|                                                                     | Session 1:<br>Computer<br>simulations<br>for reducing<br>CO2 emission                                                              | Session 3-1:<br>Computational<br>heat transfer and<br>fluid dynamics | Session 4-1:<br>Computational<br>multi-component<br>and multiphase<br>flows | Session 6-1:<br>Numerical methods<br>in multiscale and<br>multi-physics<br>modeling |



### Day3: October 11, 2025 (Beijing Time)

| Time          | Schedule                                                                   |                                                                      |                                                         |  |
|---------------|----------------------------------------------------------------------------|----------------------------------------------------------------------|---------------------------------------------------------|--|
|               | Kingdom Ballroom 1#,<br>3F                                                 | Kingdom Ballroom 2#,<br>3F                                           | Kingdom Ballroom 3#,<br>3F                              |  |
|               | Session 2-1: Numerical<br>micro/nanofluid<br>dynamics and heat<br>transfer | Session 9: Turbulence                                                | Session 10: Fuel cells<br>and other application         |  |
| 08:00 -12:00  |                                                                            | Coffee Break                                                         |                                                         |  |
|               | Session 2-1: Numerical<br>micro/nanofluid<br>dynamics and heat<br>transfer | Session 9: Turbulence                                                | Session 10: Fuel cells<br>and other application         |  |
| 12:00 - 13:30 | Buffet Lunch                                                               |                                                                      |                                                         |  |
|               | Session 2-2: Numerical<br>micro/nanofluid<br>dynamics and heat<br>transfer | Session 3-2:<br>Computational heat<br>transfer and fluid<br>dynamics | Session 7: Heat and<br>mass transfer in porous<br>media |  |
| 13:30 -18:00  | Coffee Break                                                               |                                                                      |                                                         |  |
|               | Session 2-2: Numerical<br>micro/nanofluid<br>dynamics and heat<br>transfer | Session 3-2:<br>Computational heat<br>transfer and fluid<br>dynamics | Session 7: Heat and<br>mass transfer in porous<br>media |  |



### Day4: October 12, 2025 (Beijing Time)

| Time          | Schedule                                                                  |                                                                                  |                                                            |  |
|---------------|---------------------------------------------------------------------------|----------------------------------------------------------------------------------|------------------------------------------------------------|--|
|               | Kingdom Ballroom 1#,<br>3F                                                | Kingdom Ballroom 2#,<br>3F                                                       | Kingdom Ballroom 3#,<br>3F                                 |  |
| 08:00 -12:00  | Session 4-2:<br>Computational multi-<br>component and<br>multiphase flows | Session 5: Heat<br>exchangers                                                    | Session 8-1: Al,<br>surrogate modeling and<br>optimization |  |
|               | Coffee Break                                                              |                                                                                  |                                                            |  |
|               | Session 4-2:<br>Computational multi-<br>component and<br>multiphase flows | Session 5: Heat<br>exchangers                                                    | Session 8–1: Al,<br>surrogate modeling and<br>optimization |  |
| 12:00 - 13:30 | Buffet Lunch                                                              |                                                                                  |                                                            |  |
| 13:30 – 18:00 | Session 3-3:<br>Computational heat<br>transfer and fluid<br>dynamics      | Session 6-2: Numerical<br>methods in multiscale<br>and multi-physics<br>modeling | Session 8-2: Al,<br>surrogate modeling and<br>optimization |  |
|               | Coffee Break                                                              |                                                                                  |                                                            |  |
|               | Session 3-3:<br>Computational heat<br>transfer and fluid<br>dynamics      | Session 6-2: Numerical<br>methods in multiscale<br>and multi-physics<br>modeling | Session 8-2: Al,<br>surrogate modeling and<br>optimization |  |

### **Plenary Lectures**

#### Ultimate heat transfer in convective and sheared turbulence

Professor Genta Kawahara University of Osaka, Japan



#### **Abstract**

If there is a difference in temperature between bulk fluid and a wall surface in wallbounded turbulent flows, heat will be transferred between the fluid and the wall. Such heat transfer is dominated by thermal conduction on the wall where turbulent heat flux is null, although it highly depends on turbulence characteristics. In this talk, turbulent heat transfer in wall-bounded thermal convection and shear flow is discussed with emphasis on the so-called ultimate state in which a wall heat flux is independent of thermal diffusivity, i.e. conduction anomaly (or anomalous scalar dissipation), while energy dissipation is independent of kinematic viscosity, i.e. the Taylor dissipation law implying inertial energy dissipation or anomalous energy dissipation. The classical scaling widely observed in turbulent Rayleigh-Bénard convection is first reviewed to differentiate the ultimate state from the classical state. Feasibility of the ultimate heat transfer is then explored numerically. Wall permeability, which can be implemented on a porous wall, is introduced in Rayleigh-Bénard convection. It is found that in thermal convection between the horizontal permeable walls, the ultimate heat transfer can be achieved at high Rayleigh numbers. We discuss the reason why wall permeability can lead to the ultimate scaling in wall-bounded convective turbulence. We further pursue the ultimate heat transfer numerically in turbulent channel flow by introducing the wall permeability. The ultimate heat transfer can be accomplished even in shear flow between the parallel permeable walls at high Reynolds numbers. It is also demonstrated that the ultimate heat transfer can be achieved in realistic configurations by numerical simulation and experiment of turbulent thermal convection between horizontal porous walls. At low Rayleigh numbers, vertical (wall-normal) fluid motion is not excited in the near-wall region despite wall permeability, so that the classical state can be observed. At high Rayleigh numbers, however, large-scale thermal plumes appear even near the walls from convective instabilities of near-wall thermal conduction layers to intensify the vertical heat flux, leading to the ultimate state. In between these two distinct scaling ranges of the Rayleigh number, we have found super-ultimate behaviour represented by the higher value of the scaling exponent of the heat flux than that in the ultimate state. This super-ultimate scaling is considered to be a consequence of full excitation of



large-scale thermal plumes comparable with those in the ultimate state and of less energy dissipation in the flow through porous walls than in the ultimate state at the high Rayleigh numbers.

#### **Biography**

Prof. Genta Kawahara received his B.S., M.S., and Ph.D. degrees from University of Osaka. He was appointed as an associate professor at Kyoto University in 2001 and a full professor at University of Osaka in 2005. He was a visiting scholar at Center for Turbulence Research, NASA Ames Research Center/Stanford University in 1998–1999, 2003, a visiting scientist at Kavli Institute of Theoretical Physics, University of California, Santa Barbara in 2017, and a visiting professor at Lille Fluid Mechanics Laboratory, University of Lille in 2024. Currently, he is an associate editor of Journal of Fluid Mechanics and an editor-in-chief of Fluid Dynamics Research. His research interests are in turbulence, transition to turbulence, turbulent heat transfer, and dynamical systems approach to these issues. He has worked on the theoretical characterisation of turbulent flows in terms of simple invariant solutions to the Navier-Stokes equation. He has also described the process of subcritical transition to turbulence using dynamical systems theory. He is recently tackling ultimate heat transfer in wall-bounded thermal convection and shear flow, where not only energy dissipation but also a wall heat flux (scalar dissipation) is independent of kinematic viscosity or thermal diffusivity.

## Direct simulation of drop impact phenomena including complex interfacial multi-physics

Professor Seungwon Shin Hongik University, Korea



#### **Abstract**

The dynamics of droplet impact, such as the bouncing of raindrops, are frequently encountered in nature. From an engineering standpoint, while traditionally relevant to applications such as spray coating and painting, their importance has significantly expanded in recent years to encompass high-precision processes in semiconductor manufacturing—such as etching, coating, and cleaning—as well as advanced additive manufacturing technologies like 3D printing, where precise fluid delivery is critical. Droplet-wall interactions are fundamentally governed by density and viscosity contrasts, as well as complex interfacial phenomena including surface tension and contact angle dynamics. These processes occur over extremely small spatial and temporal scales, making it experimentally challenging to capture the underlying physics with experiment. As a result, numerical simulations have become an alternative tool for investigating these phenomena in detail.

Accurate interface tracking is a crucial component of accurate numerical simulations. Both direct interface Front Tracking and indirect interface-capturing methods including Volume-of-Fluid (VOF), Level Set, and Lattice Boltzmann methods have been widely employed. Initial studies on droplet impact primarily focused on simplified scenarios such as droplets impact on flat surfaces, with particular attention to the maximum spreading diameter and the associated time scale. More recently, the scope of research has expanded to include curved and textured surfaces, requiring more sophisticated modeling of interfacial phenomena such as contact angle hysteresis. The consideration of surfactant effects has made the problem significantly more complex. In parallel, there has been growing interest in non-Newtonian and viscoelastic fluids, extending the applicability of these models to a broader range of industrial and biological contexts.

This presentation focuses on the development of accurate interface-tracking techniques tailored to simulate droplet impact on complex solid geometries. Special emphasis is given to advanced contact models capable of robustly capturing surface interactions. In addition, the incorporation of various auxiliary models is discussed to account for intricate interfacial behaviors such as Marangoni, surfactant, non-



Newtonian, viscoelastic, phase change effect, etc., with the ultimate goal of enhancing the predictive capability of direct numerical simulations in realistic multiphase flow scenarios.

#### **Biography**

Prof. Seungwon Shin received his B.S. and M.S. degrees in Mechanical Engineering from Seoul National University, Korea, in 1995 and 1998, respectively. He then received his Ph.D. from Georgia Tech in 2002. Dr. Shin is currently a Professor at the School of Mechanical and System Design Engineering at Hongik University in Seoul, Korea. He currently serves as Senior Vice President of the Korean Society for Computational Fluid Engineering and Vice Chair of the Fluid Engineering Division of the Korean Society of Mechanical Engineers. His research interests include computational fluid dynamics, multiphase flow especially interface tracking, surface tension effect, contact behavior.



## Modeling and Computation of Multiscale Transport: From Rarefied Flow to Turbulence

## Professor Kun Xu Hong Kong University of Science and Technology, China



#### **Abstract**

Gas dynamics modeling encompasses multiple scales, from the Navier-Stokes equations governing continuum flow to the Boltzmann equation describing rarefied flow. While these equations operate at fundamentally different physical scales, their numerical implementation requires discretization in computational space with finite cell resolution. This multiscale challenge is exemplified by hypersonic vehicle flow in nearspace environments, where conditions range from highly compressible continuum flow at the leading edge to free molecular flow at the trailing edge, with the cell Knudsen number varying across several orders of magnitude. Analogous multiscale phenomena arise in radiative and neutron transfer, where variations in optical thickness induce sharp transitions between free particle transport and diffusive regimes. To address these multiscale transport challenges, we have developed the unified gas-kinetic scheme (UGKS) and the unified gas-kinetic wave-particle (UGKWP) method. These approaches provide a comprehensive framework for simulating transport phenomena across all flow regimes, including rarefied gas dynamics, radiative transfer, neutron transport, and plasma physics. This presentation will also discuss the extension of our multiscale methodology to the modeling and simulation of turbulent flows.

#### **Biography**

Prof Xu graduated from Peking University in 1987. In 1988, he entered Columbia University and obtained a Doctoral degree in 1993. After PhD, he served as a post-doctoral researcher at Princeton University. He joined Hong Kong University of Science and Technology (HKUST) in 1996 and is currently chair professor of Mathematics Departments and Mechanical and Aerospace Engineering Department.



#### Two independent theories to explain coloration in supercritical fluids

Professor Jinliang Xu

North China Electric Power University, China



#### **Abstract**

Classically, a supercritical fluid (SF) is treated as a single-phase fluid without bubbles, droplets and related interfacial effect, thus it is difficult to generate coloration. Here, we assume the pseudo-boiling-induced coloration in supercritical fluids. A smart experimental setup is established, consisting of a well-controlled pressure and temperature chamber integrated with a suspended pulse-voltage-driven microheater, thus a localized pseudo-boiling region can be achieved. Blue light is demonstrated on a millisecond timescale, and the Rayleigh scattering mechanism is concluded. Two independent theories, i.e., the multiphase-percolation theory and the molecular dynamics, are developed for quantitative analysis, both of which show the existence of self-sustained nanoscale voids and/or clusters acting as effective scatterers, where the light scattering intensities in the pseudo-boiling region are 4-5 orders of magnitude larger than the bulk fluid region. Our theoretical work extends the coloration to general fluids. The multidisciplinary crossover investigation helps to understand the complicated supercritical interface phenomena.

#### **Biography**

Dr Jinliang Xu is professor in School of Energy Power and Mechanical Engineering at North China Electric Power University, and has been the Director of Key Laboratory of Power Station Energy Transfer Conversion and System, China. He has over thirty years of experience in the field of multiphase flow and heat transfer. He has had visiting positions in Hongkong (China), USA, Singapore. He led the National Key R&D Program of China and the National Basic Research Program of China for 10 years. Dr Jinliang Xu is active in the field of multiphase flow. He was the chair or co-chair for a set of academic conferences such as 4th Micro and Nano Flows Conference (University College London, UK, 2014), IHTS 2014 (International Heat Transfer Symposium 2014, Beijing) and first Int. Conference on supercritical CO2 power system (2018, Being) etc. He is the editor of the journals of Thermal Science and Engineering Progress, Frontiers in Heat pipe, Water, Energies. He is the guest editor for the special issues of Energy and Applied Thermal Engineering. He presented 40 plenary/keynote speeches in international conferences, and has been the reviewer for more than 40 journals. As the corresponding author, he published more than 300 scientific papers and co-authored two books.

### **Keynote Lectures**

## Topology optimization of heat and mass transfer processes: models and applications

Professor Li Chen
Xi'an Jiaotong University, China



#### **Abstract**

Optimizing structures to heat and mass processes is a hot research topic. Compared with conventional structural optimization method, the topology optimization method with highest freedom can design structures that go beyond human intuition. During the past ten years, we have developed topology optimization method for convective heat and mass transfer processes based on the adjoint method. The topology optimization method is then adopted to enhance heat and/or mass transfer processes related to chip cooling, PEM fuel cell, energy storage, etc. Structures with lower flow and heat resistance are designed and validated.

#### **Biography**

Li Chen is a full Professor at Xi'an Jiaotong University (XJTU) China. He obtained his PH. D in Engineering Thermophysics at XJTU in 2013, followed by a Director Postdoc at Loa Alamos National Lab from 2013 to 2016. He was the winner of Young Scientist Award of Asian Union of Thermal Science and Engineering. His research focuses on transport phenomena in porous media with background of fuel cell, flow battery, CO2 storage and hydrocarbon resource exploitation. Particularly, he has developed an advanced pore-scale model based on the Lattice Boltzmann Method for coupled multiphase flow, heat and mass transfer, chemical reaction, solid precipitationdissolution (melting-solidification) processes in porous media. Up to now, he has published 138 SCI papers in a variety of top journals, including Progress in Energy and Combustion Science, Small, Chemical Engineering Journal, Journal of Power Sources, Applied Energy, Electrochemica Acta, Energy, Chemical Engineering Journal, International Journal of Heat and Mass Transfer, Journal of Computational Physics, Physical Review E, Langmuir, Nano Energy, International Journal of Hydrogen Energy, Fuel, Water Resources Research, etc. Furthermore, his research has also resulted in over 40 conference presentations (including 24 keynote or invited talks), 10 patents and 8 software copyrights. He is in the editor board of two international journals (Frontiers in Heat and Mass Transfer, Energies). He is also in the young editor board of Advances in Applied Energy. He is the associate editor of Frontiers in Thermal Engineering.



## On the Mechanism of heat transfer modulation by finite-size particles in Rayleigh-Bénard convection

## Professor Lian-Ping Wang Southern University of Science and Technology, China



#### **Abstract**

In thermal multiphase flows, the modulation in the heat transfer rate due to the presence of finite-size solid particles attract growing interest in recent years. This study focuses on developing a robust and efficient simulation method for particle-laden Rayleigh-Bénard convection. We utilize the double distribution function-based thermal lattice-Boltzmann method (TLBM), which enables successful simulations of multiphase fluid-thermal interactions. The no-slip boundary of the moving solid particles is handled by the interpolated bounce-back scheme. Additionally, Galilean invariant momentum exchange and heat exchange approaches are employed for hydrodynamic force and heat transfer calculation at the solid boundaries. The accuracy of the current method is verified first with several benchmark cases. Then, we explore the modulation of Rayleigh-Bénard flows due to the presence of freely moving finite-size particles. The effects of finite-size solid particles on the overall heat transfer efficiency and modulation to the flow field in three-dimensional particle-laden turbulent Rayleigh-Bénard convection are discussed. The results show that addition of solid particles causes a moderate increase in the overall Nusselt number, and this enhancement is mainly due to the increased heat flux transported by the particles, associated with the large-scale and vertical transport modes of particle motion and particle-induced thermal plumes. This enhancement is seen at low to moderate Rayleigh numbers, and disappears at high Rayleigh numbers.

#### **Biography**

Dr. Lian-Ping Wang is currently a Chair Professor and Director of Center for Computational Science and Engineering at Southern University of Science and Technology, China. He received a Batchelor's degree in Mechanics from Zhejiang University in 1984, and a PhD in Mechanical Engineering from Washington State University in 1990. He was then a Visiting Research Associate at Brown University from 1990 to 1992, after which he was a Research Associate at Pennsylvania State University from 1992 to 1994. He joined Mechanical Engineering at the University of Delaware in 1994 as an Associate Professor and become a Professor in 2009. Dr. Wang's areas of expertise include multiphase flows, turbulent flows, computational fluid dynamics, and



high-performance computing, with applications to environmental fluid mechanics such as cloud microphysics, sediment transport and flows through soil porous media. He is a Fellow of American Physical Society and a Fellow of American Society of Mechanical Engineers, and has been awarded NSFC Distinguished Overseas Young Investigator, Yangtze River Scholar Distinguished Professor, Elsevier Most Cited Chinese Researcher, Stanford World's Top 2% Scientist and ScholarGPS Top 0.5% of All Scholars Worldwide. In May 2022, he became an Associate Editor of JFM, and currently he handles JFM Rapids papers.



## A diffuse-interface lattice Boltzmann method for multiphase reactive flows

## Professor Zhenhua Chai Huazhong University of Science and Technology, China



#### **Abstract**

In this talk, we will first present a diffuse-interface model for gas-liquid-solid multiphase flows with chemical reaction where a novel free energy is proposed for the gas-liquid-solid three-phase system. In this model, a smooth indicator function for the solid phase is also introduced into the Navier-Stokes equations and convection-diffusion equation for flow and concentration fields to preserve the velocity and reactive boundary conditions on the solid surface. Based on the developed diffuse-interface model, the fluid interface dynamics, the fluid-structure interaction, the wetting property of the solid surface and heterogeneous reaction can be described simply and efficiently. To test the present diffuse-interface model, we then develop a lattice Boltzmann method and conduct some simulations of benchmark problems, and the numerical results show that the diffuse-interface lattice Boltzmann method has a good performance in the study of multiphase reactive flows.

#### **Biography**

Dr. Zhenhua Chai received his B.S. and Ph.D. from the Zhengzhou University and Huazhong University of Science and Technology in 2004 and 2009, respectively. Then he joined the Huazhong University of Science and Technology in 2009, and has been a Professor and Associate Dean of School of Mathematics and Statistics at the Huazhong University of Science and Technology, China. His research covers the lattice Boltzmann method, modeling and simulation of multiphase flow problems and fluid flows in porous media. He has published over 150 international peer reviewed papers.

#### Flame-wall interaction for gas turbine applications

## Professor Dongh-yuk Shin Korea Advanced Institute of Science and Technology, South Korea



#### **Abstract**

The climate change has forced many combustion systems move away from hydrocarbon fuels. The strongest alternative fuel is hydrogen whose exhaust only emits water vapor. Therefore, many gas turbine manufacturers are developing 100% hydrogen-powered gas turbines. In switching the fuel, one of the major technical issues is flame flashback - the reactivity of hydrogen is so fast so that the flame propagates upstream of the fuel nozzle. Once the flame flashback happens that the fuel nozzle which is weak for high temperature can be burnt and the nozzle has to be replaced. The flame flashback would incur interruption of the operation as well as the huge replacing cost. To prevent flame flashback, gas turbine manufacturers are now switching nozzle types from swirlers to micro-mixers which is relatively more robust to flame flashback. Still, fundamental understanding on flame flashback is necessary to rule out the onset of flame flashback and optimize the nozzle to reduce the pressure drop. The current talk presents the recent findings on the dynamics on flame flashback on hydrogen flames. Premixed flame propagation in a turbulent boundary layer reveals the interaction between the flame propagation and the modification of approaching turbulent flows. Furthermore, the quenching distance of the flame can change by wall thermal characteristics of walls.

#### **Biography**

Professor Dong-hyuk Shin is an Associate Professor in the Department of Aerospace Engineering at the Korea Advanced Institute of Science and Technology (KAIST). He received his Ph.D. in Aerospace Engineering from the Georgia Institute of Technology in 2012, following his graduation from KAIST in 2006 with a B.S. in Aerospace Engineering and a minor in Mathematics. Prior to joining KAIST, Prof. Shin built an international research and teaching career. From 2015 to 2019, he served as a Lecturer (equivalent to Assistant Professor) at the University of Edinburgh. He also held research fellow positions at the University of Southampton (2014–2015) and as a Marie Curie Fellow at CERFACS in France (2013–2014). His post-doctoral work began at Georgia Tech in early 2013. His research centers around mathematical modeling and high-fidelity simulations of turbulent combustion. His research work is applied to various combustion systems, such as gas turbines and rocket propulsions.

#### Effects of flow blockage on convective flow through a vertical channel

## Professor Chengwang Lei The University of Sydney, Australia



#### **Abstract**

Convective flow through a vertical channel is relevant to many industrial and domestic applications. Examples include thermal flows between panel radiators and through wall-integrated solar chimney for building ventilation. In this work, we examine the effects of flow blockage on heat and mass transfer of convective flow through a vertical channel under various configurations including isothermal and isoflux heating, one-wall and two-wall heating, and with different bluff bodies (a circular cylinder or a louvre) placed in the channel. Numerical simulations are carried out over a range of Rayleigh numbers, blockage ratios, and blockage locations.

It is found that the presence of a bluff body in the convective flow channel significantly enhances mixing and turbulence and in turn enhances the convective flow through the channel. In the case with a rigidly mounted circular cylinder in the channel, three distinct wake flow regimes are observed for both isothermal and isoflux heating at different Rayleigh numbers and blockage ratios, including steady symmetric, unsteady periodic, and unsteady asymmetric flow regimes. For the two-wall isothermal heating case, greater than 60% heat transfer enhancement relative to an unblocked channel may be achieved in the unsteady periodic flow regime at certain configuration. For the two-wall isoflux heating case, up to 40% enhancement of the mass flow rate and up to 31% drop of the averaged wall temperature may be achieved. And for the one-wall isoflux heating case, the presence of a louvre in the channel may lead to more than double the ventilation rate of an unblocked channel.

The present investigation has demonstrated an effective passive strategy using flow blockage to enhance thermal and ventilation performance of convective flow through vertical channels.

#### **Biography**

Chengwang Lei is a full professor and Deputy Head of School in the School of Civil Engineering at The University of Sydney, Australia. Professor Lei received his bachelor's degree (1988) and master's degree (1992) in Mechanical Engineering at Huazhong University of Science & Technology and PhD degree (2000) in Civil Engineering at The University of Western Australia. His main research focus is on fundamental fluid mechanics and heat transfer processes associated with buoyancy driven flows. The



research spans multiple disciplines with environmental, industrial, and domestic applications and involves concurrent experimental, numerical, and analytical modelling. Professor Lei is a Founding Fellow of Asian Union of Thermal Science and Engineering (AUTSE), a member of the AUTSE Executive Board, and a member of the Executive Committee of Australasian Fluid and Thermal Engineering Society. He serves as an Associate Editor of Journal of Enhanced Heat Transfer (Begell House) and an Editorial Board Member of multiple international journals including Energy and Buildings (Elsevier), Heat Transfer (Wiley), and Discover Mechanical Engineering (Springer).

#### **Combustion Simulation: For Carbon Neutrality in 2050**

Professor Hiroaki Watanabe Kyushu University, Japan



#### **Abstract**

Many countries and industries all over the world announced the Carbon Neutrality in 2050. For achieving this target, a high-fidelity innovative combustion simulation should contribute to R&D in both fundamental and industrial applications. In this presentation, a multi-dimensional flamelet modeling and applications of large-eddy simulation (LES) to combustors in novel zero-emission power plants in addition to a coal-ammonia co-combustion boiler in a conventional power plant are presented. Moreover, for a development of a digital twins of real world's clean energy system, the V&V of the super-simulation in which a combustion simulation is coupled with a structure simulation by the unsteady two-way coupling method is reported. The super-simulation is expected as a promised tool to assess combustion performance of designed realistic combustors and reactors with their thermal durability.

#### **Biography**

Prof. Hiroaki Watanabe received his Ph.D. (2008) in Department of Mechanical Engineering and Science from Kyoto University. He worked as a Senior Research Scientist at the Central Research Institute of Electric Power Industry (1998–2014), a Visiting Senior Research Fellow at the Center for Turbulence Research, Stanford University (2010–2011), and a Visiting Associate Professor at The University of Tokyo (2011–2014). He joined Kyushu University in 2014 as an Associate Professor and has been a Professor since 2020.

His research focuses on modeling and simulation of turbulent combustion, especially large-eddy simulation (LES) of hydrogen/ammonia, spray, and coal combustion/gasification. He is also investigating the applicability of LES to practical-scale facilities such as gas turbine combustors, coal combustion boilers and gasifiers including the combustion and the structure interaction multiphysics simulations.

He has received several awards, including the JSME Young Engineers Award (2008), the JSME Medal for Outstanding Paper (2011, 2018), the CSJ Young Scientists Award (2011), the CSJ Award for Outstanding Paper (2013, 2022), the APT Distinguished Paper Award (2019) and the JIE Best Paper Award (2022, 2025).



### Computational Analysis of Phase Change based Heat Sink coupled with Heat Pipe as Thermal Conductivity Enhancer

Professor Jyotirmay Banerjee Sardar Vallabhbhai National Institute of Technology, India



#### **Abstract**

Comprehensive numerical analysis is reported for phase change material (PCM) based heat sink coupled with a model heat pipe as thermal conductivity enhancer (TCE). The heat pipe is modeled considering a fixed liquid-vapor interface and solving the Navier-Stokes equations in domain-specific formulations applied to the solid wall, the porous wick, and the vapor core. The porous wick is modelled using the extended Darcy-Brinkman-Forchheimer formulation, accounting for both viscous and inertial effects in the saturated porous structure. The estimated effective thermal conductivity of the heat pipe is used when coupled with the phase change based heat sink where the phase change process of PCM is modeled using an enthalpy-porosity approach. An in-house test facility is developed for validating the numerical results. The results demonstrate that the PCM-embedded heatsink coupled with a heat pipe (as TCE) maintains the base temperature below the set point for an extended period. Additionally, with the coupled heat pipe configuration full utilization of the PCMs latent heat storage capacity is ensured which in turn promotes the charging cycle. For applicability to real life electronic devices, the simulation results are analyzed in terms of non-dimensional numbers including Fourier number, and modified Nusselt number.

#### **Biography**

Professor Jyotirmay Banerjee obtained his Doctorate of Philosophy (PhD) from Indian Institute of Technology, Kanpur in India. He has more than 28 years of teaching and research experience. His research interests include Computational Fluid Dynamics, Multiphase Flow and Heat Transfer and Phase Change Applications. He has more than 100 peer reviewed journal papers, 4 books and 23 book chapters to his credit. He is presently an Associate Editor of SÃDHANÃ published by the Indian Academy of Science. He has completed several research projects funded by Science and Engineering Research Board (SERB), Board of Research Nuclear Studies (BRNS), Aeronautical Research and Development Board (ARDB) and Consultancy Assisted Research Services (CARS) sanctioned by Defence Research and Development Organization (DRDO) of India. He has rendered major consultancy services to industries including Tehri Hydro Development Corporation (THDC) Limited, Uttaranchal Jal Vidyut Nigam Limited



(UJVNL) and Koteshwar Hydroelectric Project. Earlier he has served as Dean of Academics and Head of Department of Mechanical Engineering at SVNIT Surat. As a Professor In-charge, Research Park and Director of Association for Harnessing Innovation and Entrepreneurship (ASHINE), a not-for-profit company, he was instrumental in promoting entrepreneurial activities at SVNIT Surat.

### Micropillar-patterned electrodes to enhance mass transfer in low Ptloaded fuel cells

Professor Meng Ni
The Hong Kong Polytechnic University, Hong Kong, China



#### **Abstract**

The practical application of fuel cell vehicles is hindered by the poor performance and durability of proton exchange membrane fuel cells, especially with a low Pt loading and at a low relative humidity, due to limited proton transport properties and limited electrochemical reaction surface areas of conventional electrode design. Here, we propose a patterned design with ordered ionomer micropillars as an alternative electrode structure, which enhances the performance and durability of proton exchange membrane fuel cells with a low Pt loading (0.1 mg cm-2) across a wide range of humidities. Compared to conventional electrodes, patterned electrodes achieve up to 29% peak power density improvement under low-humidity (50%) conditions. Pore-scale multiphysics modeling demonstrates that the ionomer micropillars inside patterned electrodes facilitate efficient proton transport within the electrode, enabling a higher oxygen reduction reaction rate at these sites and thus enhancing the homogeneity of reaction rates. Moreover, patterned electrodes exhibit improved durability, showing less performance loss after accelerated stress testing across a wide range of humidities compared to conventional electrodes. Strategic redesign of ionomer micropillars demonstrates that the electrode of H1.8W0.38, with its increased penetration depth and appropriately adjusted width, achieves optimal performance by minimizing oxygen and proton transport resistances by 6% and 14% respectively, compared to the preoptimization (H1.5W0.38) under low-humidity (50%) conditions. The proposed patterned design strategy offers a promising approach for advancing the development of high-performance, cost-effective, and durable fuel cells.

#### **Biography**

Prof. Meng Ni received his PhD from The University of Hong Kong in 2007. He joined The Hong Kong Polytechnic University as an Assistant Professor in 2009. He is now a Chair Professor of Energy Science and Technology, Head of Department of Building Environment and Energy Engineering, and Associate Dean (Research) of Faculty of Construction and Environment. Prof. Meng Ni is a Humboldt Fellow, RGC Senior Research Fellow, and a Fellow of Hong Kong Institution of Engineers (HKIE). His research focuses on fuel cells, hydrogen energy, rechargeable batteries and low-grade



heat utilization. He is a co-editor-in-chief of Energy Reviews (Elsevier) and an Associate Editor for 3 journals. He served as an Associate Editor for Science Bulletin in 2015-2017 and received Best Associate Editor Award twice. He is an active reviewer for over 80 journals, including Science, Nature Energy, Nature Communications, Joule, Advanced Materials, etc.

## A study on energy consumption and energy savings potential of cooling solutions for commercial buildings in Viet Nam

## Professor Quoc Dung Trinh Hanoi University of Science and Technology, Viet Nam



#### **Abstract**

This paper examines sustainable cooling to achieve net zero buildings in Vietnam, focusing on primary energy consumption in commercial buildings. The main objective is to analyze and evaluate energy use, identify potential savings, and propose effective solutions by means of numerical simulation. The study considers factors that affect energy consumption, including HVAC systems, lighting, and equipment. Data is collected from office buildings, hotels, and shopping malls in major cities to model and estimate energy consumption. Finally, the paper proposes energy reduction scenarios, such as the use of renewable energy, high-efficiency cooling systems and passive cooling to achieve the net zero goal.

#### **Biography**

Graduating with a doctorate from Technical University of Berlin (Germany) and having more than 20 years of experience in refrigeration and air conditioning, Mr. Trinh Quoc Dung is currently a lecturer with the focus on refrigeration and air conditioning at the Department of Thermal Energy Engineering, School of Mechanical Engineering, Hanoi University of Science and Technology.

With his experience and knowledge and published 20 papers on conferences and journals and 02 book chapters, he is currently engaged in teaching and research on refrigeration and air-conditioning technology in the engineer training program at Hanoi University of Science and Technology. At the same time, he is also an expert and technical consultant for projects on urban cooling (UNEP), Nationally Determined Contribution (NDC) updated in 2022, Strategy on Climate Change. climate change to 2050 (2022), Decree on reducing greenhouse gas emissions and protecting the ozone layer (2022), National Cooling Action Plan (2024), building-up standards and technical regulations related to economical use of energy and efficiency, refrigerants management and environmental protection in the refrigeration and air-conditioning sector.



#### **Physics-Informed Flow Simulations via Operator Learnings**

### Professor Sanghun Choi Kyungpook National University, South Korea



#### **Abstract**

This study presents a machine learning-based surrogate modeling framework for optimizing ventilation efficiency in complex industrial environments, with a focus on ship engine rooms and coffer dams. Traditional computational fluid dynamics (CFD) approaches are computationally intensive, particularly for large-scale parametric studies. To address this challenge, we employ a physics-aware recurrent convolutional (PARC) neural network, trained on 60 unsteady 3D CFD simulations with varying fan placements and orientations. The model predicts the Age of Air (AoA) distribution, a key indicator of ventilation performance, with high accuracy and drastically reduced computation time. The framework integrates geometric and operational parameters, such as fan location, orientation, and type, using a specialized shape descriptor. To identify optimal fan configurations that minimize AoA, Bayesian optimization is employed. The surrogate model achieves prediction times reduced from several hours to seconds, demonstrating its capability to replace high-fidelity CFD simulations in realtime optimization scenarios. Furthermore, the PARC model was evaluated on a different geometry, i.e., a coffer dam scenario, and showed successful generalization across different domains. In this case, we also implemented and compared two advanced operator learning models: the deep operator network (DeepONet) and the Fourier neural operator (FNO). These comparisons highlight the advantages and limitations of different operator-based approaches. Overall, this research demonstrates the potential of operator learning-based AI to accelerate fluid simulation workflows and support real-time digital twin applications in engineering design.

#### **Biography**

His research centers on high-performance computational simulations and population-based lung imaging analyses, aiming to develop effective interventions for respiratory diseases and to uncover their structural and functional mechanisms. He employs core techniques such as computational fluid dynamics, artificial intelligence, and medical image analysis. To date, he has published around 60 SCIE-indexed papers, with approximately 1,300 citations (Google Scholar).

He received academic training in both mechanical and biomedical engineering. He earned his Ph.D. in mechanical engineering and an M.S. in biomedical engineering from



the University of Iowa, where he studied structural and functional changes in asthma patients using computational approaches. He also holds an M.S. in mechanical engineering from Seoul National University, where he developed finite element methods for two-phase flow with strong surface tension effects.

Since 2017, he has led the Machine Learning and Fluid Mechanics Laboratory (MLFM) and served as director of the Research Institute of Engineering Design & Technology (IEDT) at Kyungpook National University. He is also an associate editor for the Journal of Mechanical Science and Technology.

## Stripes, bands, and rings: exploring localized turbulence and directed percolation

Professor Takahiro Tsukahara Tokyo University of Science, Japan



#### **Abstract**

The subcritical transition of wall-bounded shear flows is a long-standing but evolving problem in fluid dynamics. Linear stability theory predicts the growth of infinitesimal disturbances, but the actual threshold for finite disturbances that sustains turbulence, even in localized or intermittent forms, is less clear. Pipe flow is a classical case, where localized turbulence appears as puffs that repeatedly split and decay. The balance of these processes defines the global critical Reynolds number. In planar flows such as Couette and/or Poiseuille flows, turbulence often organizes into oblique bands or stripes, resembling spiral turbulence in Taylor-Couette flow and demonstrating the coexistence of laminar and turbulent phases. In three-dimensional wall-bounded shear flows, i.e., Taylor-Couette-Poiseuille flow, ring-shaped turbulence can also emerge, adding further variety to transitional structures. A key feature of these striped/banded/ring-shaped states is the secondary large-scale flow that develops alongside localized turbulence. This flow should play a stabilizing role for turbulence localization and sustenance, but when disrupted by surface roughness, confinement, or other effects, the characteristic patterns fail to form, and the transition follows alternative routes with higher critical Reynolds numbers. Such sensitivity emphasizes the importance of secondary flows in the organization of subcritical turbulence.

The engineering relevance is evident in systems requiring reliable turbulent heat transfer. High-temperature gas-cooled reactors, for instance, employ helium coolant in an annular channel between coaxial cylinders. This annular Poiseuille flow lies between pipe and planar geometries, and depending on the radius ratio, localized turbulence may resemble puffs or bands. Intermediate regimes are more complex: the inner cylinder can alter puff splitting, while curvature and azimuthal confinement affect band persistence. These features raise fundamental questions regarding the structural characteristics of localized turbulence, its impact on heat transfer, and the dependence of secondary large-scale flows on geometry. Furthermore, laminar-turbulence coexistence near the global critical Reynolds number raises broader issues of non-equilibrium critical phenomena. In particular, the transition dynamics may exhibit properties analogous to directed percolation in absorbing state systems.



This work summarizes recent efforts to investigate these challenges through direct numerical simulations (and some experiments) across canonical planar shear flows and annular geometries. By clarifying similarities and differences, new insights are gained into the physics of subcritical transition, its critical dynamics, and its engineering implications for turbulence control and thermal management.

#### **Biography**

Takahiro Tsukahara is a professor in the Department of Mechanical and Aerospace Engineering at Tokyo University of Science (TUS). He received his PhD in Engineering from TUS in 2007, after which he served as a visiting researcher at KTH in Sweden. He joined TUS as faculty in 2008 and has been a professor since 2022. In 2011, he was also a visiting researcher at the TU Darmstadt in Germany. His research employs DNS to study subcritical transition and turbulent heat transfer in wall-bounded shear flows of Newtonian and viscoelastic fluids. His interests include flow instability, wall turbulence, drag reduction, elasto-inertial turbulence, scalar transport, interfacial and multiphase flows, and machine-learning-based approaches to turbulence modeling. He has authored more than 70 peer-reviewed journal papers. He serves as an Associate Editor of the International Journal of Heat and Fluid Flow and as an Editor of the Journal of Fluid Science and Technology. He has received multiple awards, including the JACM Fellows Award (2024), Outstanding Reviewer recognition from the Journal of Fluid Mechanics (2024), and the Frontier Award of JSME (2024).

# Investigation on the major factors affecting heat transfer and surface temperature distribution in micro combustor for micro-TPV applications

Professor Wenming Yang
National University of Singapore, Singapore



#### **Abstract**

Micro-thermophotovoltaic power generator was initiated by our group in 2022. Compared to other micro power generators being developed around the world, it does not include any moving part, as a result, it is easier to fabricate and more reliable. As one of the key components of micro-TPV system, the microcombustor which also serves as the radiator significantly determines the performance of the micro-TPV system. To achieve a higher power output, it is very important to achieve a high and uniform temperature distribution along the surface of the microcombustor. In this work, an extensive investigation has been conducted on the major factors affecting the combustion process such as porous media, block insert, combustion chamber design and blend fuel etc, subsequently on the temperature distribution, radiation energy and output power of the micro-TPV system.

#### **Biography**

Dr Wenming Yang is currently the Dean's Chair Professor in the department of Mechanical Engineering at National University of Singapore. He is the editor-in-chief of Energy Engineering and Associate Editor for the ASME Journal of Engineering for Gas Turbine and Power, Alexandria Engineering Journal etc. His research interests include: microscale combustion and micro power generators, sustainable marine transportation, fuel design and its application in IC engines etc. He has authored/co-authored over 420 papers in peer-reviewed reputable journals (such as Joule, Nature Communication, Applied Energy etc) and international conferences, of which, over 350 papers are SCI index. His papers have been cited by over 20800 times with a H-index of 76. He has won a series of prestigious awards including the Dean's Chair professor, Fellow of international association of advanced materials, 4 times of scientific progress award (2nd prize) by the Ministry of Education of China and the Society of Mechanical Engineering of China. He is also a regular reviewer for a lot of peer-reviewed reputable journals such as Nature, Nature Energy, Joule, Nano Energy, Progress in Energy and Combustion Sciences, Combustion and Flame etc.



#### Physics Informed Neural Networks for Nanofluid Flow and Heat Transfer with Dynamic Inverse Parameters

Professor Yan Su
University of Macau, Macao, China



#### **Abstract**

A physics informed neural network (PINN) framework for efficient prediction of nanofluid flow and heat transfer is built including a new inverse dynamic prediction scheme of governing parameter sets. Two PINN models based on physics-guided loss functions formulated by governing equation residuals, the Navier-Stokes equations informed neural network (NS-NN) and the Reynolds averaged Navier-Stokes equations informed neural network (RANS-NN), are presented. A standard four-module computational code is developed in C++ for comparative studies. Code validations for theoretical vortex flow fields show that the prediction errors are less than 1%, 1%, and 5% for outputs, first and second gradients, respectively. Inverse parameter sets are obtained automatically and dynamically with a root means square control mechanics for various physics governing parameters simultaneously. Both transient flow and temperature fields for natural convective nanolfuid flow in a magnetic field are predicted with high accuracy. Moreover, enhancement of the instability is observed with the help of the PINN compared to some special cases of ground truth data. Results show that the PINN with inverse dynamical parameters can achieve faster convergence speed and higher accuracy compared to conventional NNs.

#### **Biography**

Dr. Su is currently an associate Professor of Electromechanical Engineering in University of Macau. She received his PhD degree from the Department of Mechanical Engineering from University of Minnesota in 2006. In year 2000 and 2003, she obtained her Bachelor of Thermal Engineering from Tsinghua University, and Master of Mechanical Engineering from Hong Kong University of Science and Technology, respectively. Dr. Su's research interests include Thermal Dispersion in Porous Medium, Renewable Energy Systems, Oscillating Flows, Indoor Air Quality and lattice Boltzmann Methods. She also has been served as the director of the solar energy laboratory of University of Macau and associate editors of Journal of Heat Transfer (ASME), Case Studies in Thermal Engineering (Elsevier) and npj Thermal Science and Engineering (Springer Nature).

#### Study on the Mechanism of Leakage, Ignition, and Explosion in High-Pressure Hydrogen-Blended Natural Gas Pipelines

Professor Jingfa Li Yangtze University, China



#### **Abstract**

Hydrogen is recognized as a clean and efficient energy, and the transportation of hydrogen energy is a key factor constraining its industrial development. Blending hydrogen into existing high-pressure natural gas pipelines is regarded as the most economical transitional solution. However, due to hydrogen's high diffusivity, strong flammability, and low ignition energy, the risks of leakage, auto-ignition, and explosion are significantly increased, while the underlying mechanisms remain complex and insufficiently studied. This study investigates the entire process of "leakage-autoignition-explosion" through multi-scale numerical simulations and mechanistic analysis. First, a leakage model is established to reveal flow evolution and flammable cloud formation under different hydrogen blending ratios, pressures, and orifice sizes. Second, a reduced chemical mechanism and ignition criteria are applied to analyze critical conditions for auto-ignition, clarifying the inhibitory effect of methane and the possibility of wall-induced ignition under high hydrogen concentration scenarios. Finally, a thickened flame model is employed to simulate ignition and explosion of typical leakage clouds, yielding overpressure propagation, temperature evolution, and damage mechanisms on station facilities. The findings provide theoretical support for safety risk assessment and prevention strategies in high-pressure hydrogen-blended natural gas pipelines.

#### **Biography**

Jingfa Li is a full professor and Doctoral Supervisor in the Department of Oil & Gas Storage and Transportation Engineering at Yangtze University. His research interest focuses on the hydrogen pipeline transportation. He served as a member of the Second Youth Committee of the Heat and Mass Transfer Branch of the Chinese Society of Engineering Thermophysics and served as the youth editorial board member or guest editor for 9 academic journals. Prof. Li chaired 6 national/provincial-level projects, published over 80 SCI-indexed papers. He published the China's first textbook on hydrogen pipeline transportation. He has been awarded two provincial-level Science and Technology Progress Awards, and three Best Paper Awards and Top Influential Paper Awards. He received honors including the Outstanding Young Scholar Award



(ICCS2025) and the CMES 2023 Young Researcher Award. The high-precision hydrogen-blending equipment he developed was successfully applied in the China's first comprehensive urban gas hydrogen-blending platform, and was reported by the CCTV1, CCTV13 and other media.

#### **Invited Talks**

Fan Bai, Xi'an Jiaotong University, China

Yu-jie Chen, Beijing Institute of Petrochemical Technology, China

Zhuo Li, Tongji University, China

Hiromichi Kobayashi, Keio University, Japan

Satoshi Ii, Institute of Science Tokyo, Japan

Hiroya Mamori, The University of Electro-Communications, Japan

Yutaka Oda, Kansai University, Japan

Yuusuke Kuwata, Osaka Metropolitan University, Japan

Dongke Sun, Southeast University, China

Chengzhen Sun, Xi'an Jiaotong University, China

Lei Chen, Xi'an Jiaotong University, China

Ting Hu, China University of Petroleum, China

Hua Bao, Shanghai Jiaotong University, China

Mu Du, Shandong University, China

Wenzhen Fang, Xi'an Jiaotong University, China

Shuai Gong, Shanghai Jiaotong University, China

Chao-zhong Qin, Chongqing University, China

Linlin Fei, Xi'an Jiaotong University, China

Xiuliang Liu, Huazhong University of Science and Technology, China

Mingliang Xie, Huazhong University of Science and Technology, China

Xiafeng Zhou, Huazhong University of Science and Technology, China

Yong Shi, University of Nottingham Ningbo China, China

Changwoo Kang, Jeonbuk National University, South Korea

Hojun You, Sejong University, South Korea

Yong Wang, Southeast University, China

Chaoling Han, Nanjing Tech University, China

Zhi-Min Lin, Lanzhou Jiaotong University, China

Qixing Wu, Shenzhen University, China

Jiang Bian, Yangtze University, China

Haochun Zhang, Harbin Institute of Technology, China

Chunyang Wang, Institute of Engineering Thermophysics, Chinese Academy of Sciences, China

Yue Zhang, Wuhan Institute of Technology, China



## **Conference Program**

# P Open ceremony and Plenary lectures

Oct. 10 - 10, 2025

## P Open ceremony and Plenary lectures

2025-10-10 08:00~12:00 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom, 3F

| Start | End               | ID  | Title                                                                                                                                                          |  |  |  |
|-------|-------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Zhaoli Guo |     |                                                                                                                                                                |  |  |  |
| 08:00 | 08:30             |     | Opening Ceremony                                                                                                                                               |  |  |  |
|       |                   |     | Chair: Gihun Son                                                                                                                                               |  |  |  |
| 08:30 | 09:15             | 168 | Keynote speech Ultimate heat transfer in convective and sheared turbulence                                                                                     |  |  |  |
|       |                   |     | Genta Kawahara/University of Osaka, Japan                                                                                                                      |  |  |  |
| 09:15 | 10:00             | 169 | Keynote speech Direct simulation of drop impact phenomena including complex interfacial multi-physics                                                          |  |  |  |
|       |                   |     | Seungwon Shin/Hongik University, Korea                                                                                                                         |  |  |  |
| 10:00 | 10:30             |     | Coffee Break                                                                                                                                                   |  |  |  |
|       |                   |     | Chair: Mamoru Tanahashi                                                                                                                                        |  |  |  |
| 10:30 | 11:15             | 182 | Keynote speech Modeling and Computation of Multiscale Transport: From Rarefied Flow to Turbulence Kun Xu/Hong Kong University of Science and Technology, China |  |  |  |
| 11:15 | 12:00             | 170 | Keynote speech Two independent theories to explain coloration in supercritical fluids  Jinliang Xu/North China Electric Power University, China                |  |  |  |



## S1 Computer simulations for reducing CO2 emission

Oct. 10 - 10, 2025

#### S1 Session 1

2025-10-10 13:30~17:15 Wuhan Opties Valley Kingdom Plaza Yellow Crane Room, 3F

| Start | End                | ID  | Title                                                                                                                                                                                    |  |  |  |
|-------|--------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Jinliang Xu |     |                                                                                                                                                                                          |  |  |  |
| 13:30 | 14:00              | 174 | Keynote speech Combustion Simulation: For Carbon Neutrality in 2050 Hiroaki Watanabe/Kyushu University, Japan                                                                            |  |  |  |
|       |                    |     | Chair: Hiroaki Watanabe                                                                                                                                                                  |  |  |  |
| 14:00 | 14:20              | 186 | Invited speech Application of Reaction Solute Transport Simulation in CO2 Enhanced Oil Recovery Ting Hu/China University of Petroleum, China                                             |  |  |  |
| 14:20 | 14:40              | 187 | Invited speech Membrane-Based Technologies for Post-Combustion CO2 Capture from Flue Gases: Research on CO₂ Separation Membrane Materials and Processes Zhuo Li/Tongji University, China |  |  |  |
| 14:40 | 14:55              | 95  | Oral. A Computational Study on the Mechanism of CO2 Transportation in MOF-based Mixed Matrix Membrane Xiaohui Liu/Tongji University, China                                               |  |  |  |
| 14:55 | 15:10              | 21  | Oral. The influence mechanism of thermal boundary conditions on heat transfer inside helically coiled tubes Jinlong Zhang/Lanzhou Jiaotong University, China                             |  |  |  |
| 15:10 | 15:25              | 181 | Oral. Optimization of Combustor Geometry for Outlet Temperature Uniformity in a Micro Jet Engine Patryk Golab/Korea Advanced Institute of Science and Technology (KAIST), South Korea    |  |  |  |
| 15:25 | 15:40              | 27  | Oral. Numerical Investigation of Three-Phase Displacement in Large-Scale 2D Pore Structures  Song Sheng/Xi'an Jiaotong University, China                                                 |  |  |  |
| 15:40 | 16:10              |     | Coffee Break                                                                                                                                                                             |  |  |  |



| Start | End            | ID  | Title                                                                                                                                                                                       |  |  |  |  |
|-------|----------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | Chair: Ting Hu |     |                                                                                                                                                                                             |  |  |  |  |
| 16:10 | 16:30          | 188 | Invited speech Treatment of natural gas with varying CO2 concentration using supersonic flows  Jiang Bian/Yangtze University, China                                                         |  |  |  |  |
| 16:30 | 16:45          | 71  | Oral. A Comparative Study of Brayton Cycle and Rankine Cycle in CO <sub>2</sub> Carnot Batteries Yuxi Ji/Beijing Institute of Petrochemical Technology, China                               |  |  |  |  |
| 16:45 | 17:00          | 74  | Oral. Local Heat Transfer Analysis of Supercritical CO2 in a Rayleigh-Bénard Convection cell Rui Zhang/Institute of Engineering Thermophysics, Chinese Academy of Sciences, China           |  |  |  |  |
| 17:00 | 17:15          | 158 | Oral. Thermal Energy Storage Characteristics of CaCO3/CaO in a sCO2 Heated Calciner with Non-Uniform Heat Flux and Variable Porosity Model  Jiheng Li/Hebei University of Technology, China |  |  |  |  |



## S2 Numerical micro/nanofluid dynamics and heat transfer

Oct. 11 - 11, 2025

#### **S2-1** Session 2-1

2025-10-11 08:00~12:00 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 1#, 3F

| Start | End                 | ID  | Title                                                                                                                                                                                                                                 |  |  |  |
|-------|---------------------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Wenming Yang |     |                                                                                                                                                                                                                                       |  |  |  |
| 08:00 | 08:30               | 180 | Keynote speech Physics Informed Neural Networks for Nanofluid Flow and Heat Transfer with Dynamic Inverse Parameters  Yan Su/University of Macau, China                                                                               |  |  |  |
|       |                     |     | Chair: Yong Shi                                                                                                                                                                                                                       |  |  |  |
| 08:30 | 08:50               | 189 | Invited speech GiftBTE: An Efficient and Parameter-Free Simulation Tool for Micro/Nanoscale Heat Conduction Hua Bao/Shanghai Jiao Tong University, China                                                                              |  |  |  |
| 08:50 | 09:05               | 162 | Oral. Solving 3D Inverse Heat Transfer Problems in Living Insects Using Small Sample Data Mingming Huang/Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), China                                                 |  |  |  |
| 09:05 | 09:20               | 153 | Oral. Interfacial Phonon Transport Model in DSMC Framework Based on the Scattering Matrix Method  Yifei Li K.C. Wong Foundation/Institute for Multiscale Thermofluids, School of Engineering, University of Edinburgh, United Kingdom |  |  |  |
| 09:20 | 09:35               | 39  | Oral. The Enhancement of Heat Transfer Performance of Corrugated Fin-and-Circle Tube Heat Exchanger with Ellipsoidal Protrusions  An-Ning Guo/Lanzhou Jiaotong University, China                                                      |  |  |  |
| 09:35 | 09:50               | 160 | Oral. Cu Doping Enhances the Thermoelectric Performance of WS2 Polycrystalline Thin Films  Yilong Zhang/Xi'an Jiaotong University, China                                                                                              |  |  |  |
| 09:50 | 10:10               |     | Coffee Break                                                                                                                                                                                                                          |  |  |  |



| Start | End            | ID  | Title                                                                                                                                                                                                |  |  |  |
|-------|----------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Hua Bao |     |                                                                                                                                                                                                      |  |  |  |
| 10:10 | 10:30          | 190 | Invited speech Lattice Boltzmann Simulation of Oscillatory Flows at the Micro and Nanoscale  Yong Shi/University of Nottingham Ningbo China                                                          |  |  |  |
| 10:30 | 10:45          | 1   | Oral. An asymptotic preserving discrete unified gas kinetic scheme for nonlinear gray radiative transfer equations  Xinliang Song/Institute of Applied Physics and Computational Mathematics, China  |  |  |  |
| 10:45 | 11:00          | 143 | Oral. Effect of Gradient Porous Heterogeneous Electrode on<br>the Electrochemical-Thermal Coupling Behavior of Lithium-<br>ion Batteries<br>Hui Xu/China university of petroleum (East China), China |  |  |  |
| 11:00 | 11:15          | 33  | Oral. Morphological Evolution and Evaporation Dynamics of Compound Droplets in Droplet-Borne Disease Transmission  Dong Liu/North China Electric Power University, China                             |  |  |  |
| 11:15 | 11:30          | 55  | Oral. Enhanced PEMFC performance through gradient catalyst layer design with an improved agglomerate model  Zhengyan Li/Xi'an Jiaotong University, China                                             |  |  |  |
| 11:30 | 11:45          | 11  | Oral. Numerical Simulation of Icing: From Macroscale to Microscale Yichong Wang/Dalian Maritime University, China                                                                                    |  |  |  |
| 11:45 | 12:00          | 24  | Oral. Molecular Dynamics Study of the Condensation Behavior in Grafted PNIPAM Systems with Non-Condensable Gas  Jiaxing Luo/Dalian Maritime University, China                                        |  |  |  |



### S2-2 Session 2-2

2025-10-11 13:30~17:35 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 1#, 3F

| Start | End   | ID           | Title                                                                                                                                                                                                                                             |  |  |  |
|-------|-------|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       |       |              | Chair: Yan Su                                                                                                                                                                                                                                     |  |  |  |
| 13:30 | 14:00 | 179          | Keynote speech Investigation on the major factors affecting heat transfer and surface temperature distribution in micro combustor for micro-TPV applications  Wenming Yang/National University of Singapore, Singapore                            |  |  |  |
|       |       |              | Chair: Heng Yi                                                                                                                                                                                                                                    |  |  |  |
| 14:00 | 14:20 | 132          | Invited speech Effects of Axial Heat Conduction and Viscous Dissipation on Convective Heat Transfer Characteristics of Fluids at the Nanoscale Chengzhen Sun/Xi'an Jiaotong University, China                                                     |  |  |  |
| 14:20 | 14:35 | 22           | Oral An Enthalpy-Based Lattice Boltzmann Flux Solver for Liquid Solidification  Jinxiang Zhou/Nanjing University of Aeronautics and Astronautics, China                                                                                           |  |  |  |
| 14:35 | 14:50 | 26           | Oral Microchannel Flow Modulation by Flexible Magnetic Micropillars under Magnetic-Fluid Coupling Feng Jiao/Kunming University of Science and Technology, China                                                                                   |  |  |  |
| 14:50 | 15:05 | 45           | Oral. Microscopic mechanisms of thermal transport in semiconductor chip materials by inhomogeneous strain engineering  Dian Huang/Xi'an Jiaotong University, China                                                                                |  |  |  |
| 15:05 | 15:20 | 120          | Oral Molecular Dynamics Simulation of Nanogroove Geometry Effects on Pool Boiling Siqi Wang/Xi'an University of Architecture and Technology, China                                                                                                |  |  |  |
| 15:20 | 15:50 | Coffee Break |                                                                                                                                                                                                                                                   |  |  |  |
|       |       |              | Chair: Chengzhen Sun                                                                                                                                                                                                                              |  |  |  |
| 15:50 | 16:05 | 59           | Oral. Dynamic Thermal Management of 3D Integrated Circuits via Two-Phase Flow Boiling: Effects of Pulsed Heat Sources on Bubble Dynamics and Heat Transfer in Three-dimensional Integrated Circuit  Bingcheng Li/Xi'an Jiaotong University, China |  |  |  |
|       |       |              | bringeriong Lifth an hactoring offiversity, crimia                                                                                                                                                                                                |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                                                                             |
|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16:05 | 16:20 | 101 | Oral. Non-equilibrium molecular dynamics simulation study on<br>the influence of inorganic salts on the viscosity of partially<br>hydrolyzed polyacrylamide solutions<br>Bingxiu Wu/Beijing Institute of Petrochemical Technology,<br>China       |
| 16:20 | 16:35 | 214 | Oral. Electrochemical-mechanical coupled phase-field modeling for lithium dendrite growth in all-solid-state lithium metal batteries Guoqing Qi/University of Science and Technology Beijing, China                                               |
| 16:35 | 16:50 | 37  | Oral. An improved lattice Boltzmann method with a novel conservative boundary scheme for viscoelastic fluid flows Yuan Yu/Xiangtan University, China                                                                                              |
| 16:50 | 17:05 | 51  | Oral. Thermodynamic performance analysis of a cascade heat pump for industrial blower exhaust heat recovery  Zelin Chen/North China Electric Power University, China                                                                              |
| 17:05 | 17:20 | 135 | Oral. Thermo-Hydraulic Performance Enhancement in Microchannel Heat Sinks Using a Novel Front-Single/Rear-Double Layer Wavy Configuration: A Multi-Objective Optimization Study  Sheng Zhong/Huazhong University of Science and Technology, China |
| 17:20 | 17:35 | 85  | Oral. Enhanced Heat Transfer in Microchannel Heat Exchangers Leveraging Plug Flow Characteristics Xiao Zhang/Xi'an Jiaotong University, China                                                                                                     |



## Computational heat transfer and fluid dynamics

Oct. 10 - 12, 2025

#### **S3-1** Session 3-1

2025-10-10 13:30~17:20 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 1#, 3F

| Start | End                  | ID  | Title                                                                                                                                                                                                                                                |  |  |  |
|-------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Chengwang Lei |     |                                                                                                                                                                                                                                                      |  |  |  |
| 13:30 | 14:00                | 178 | Keynote speech Stripes, bands, and rings: exploring localized turbulence and directed percolation  Takahiro Tsukahara/Tokyo University of Science, Japan                                                                                             |  |  |  |
|       |                      |     | Chair: Hojun You                                                                                                                                                                                                                                     |  |  |  |
| 14:00 | 14:20                | 191 | Invited speech Adjoint-based Reaction Sensitivity Analysis in Weakly Ionized Hypersonic Flow Hojun You/Sejong University, South Korea                                                                                                                |  |  |  |
| 14:20 | 14:35                | 42  | Oral. Equilibrium-distribution-function based mesoscopic finite-difference methods for fractional convection-diffusion equation in Caputo sense Rui Du/Southeast University, China                                                                   |  |  |  |
| 14:35 | 14:50                | 192 | Oral. A Unified Enthalpy Based Lattice Boltzmann Model for<br>Phase Change in Composite Phase Change Materials with<br>Variable Interfacial Thermal Resistance<br>MAZHAR HUSSAIN/Pakistan Institute of Engineering and<br>Applied Sciences, Pakistan |  |  |  |
| 14:50 | 15:05                | 31  | Oral. The width of rectangular sinusoidal wavy channels determines the contributions of longitudinal and transverse vortices to flow stability  Fengjiao Pang/Lanzhou Jiaotong University, China                                                     |  |  |  |
| 15:05 | 15:20                | 90  | Oral. Numerical analysis of internal thermal response and melt-front evolution characteristics of phase change thermal buffers in aerospace vibration environments  Junjie He/Xi'an Jiaotong University, China                                       |  |  |  |
| 15:20 | 15:50                |     | Coffee Break                                                                                                                                                                                                                                         |  |  |  |



| Start | End           | ID  | Title                                                                                                                                                             |  |  |  |
|-------|---------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Rui Du |     |                                                                                                                                                                   |  |  |  |
| 15:50 | 16:05         | 96  | Oral. Investigation of Thermal Response and Ablation Mechanisms in Composite Nozzles for Long-Burn Solid Rocket Motors                                            |  |  |  |
|       |               |     | Zhenyuan Guo/Xi'an Jiaotong University, China                                                                                                                     |  |  |  |
| 16:05 | 16:20         | 84  | Oral Numerical Study on Thermally Induced Degradation and Particle Size Evolution of Temporary Plugging Agents in Hot Dry Rock Fractures                          |  |  |  |
|       |               |     | Zongze Li/Xi'an Jiaotong University, China                                                                                                                        |  |  |  |
| 16:20 | 16:35         | 105 | Oral. Numerical Investigation on the Effect of Phase Change on Bubble Growth and Detachment Hongchi Yao/Sichuan University, China                                 |  |  |  |
|       |               |     | Oral. A pointer-based adaptive mesh refinement method for                                                                                                         |  |  |  |
| 16:35 | 16:50         | 109 | DUGKS-BGK model                                                                                                                                                   |  |  |  |
|       |               |     | Yanchen Xia/Xi'an Jiaotong University, China                                                                                                                      |  |  |  |
| 16:50 | 17:05         | 134 | Oral. Development an upwind rotating lattice Boltzmann flux solver for compressible flows  Yunhao Wang/Nanjing University of Aeronautics and  Astronautics, China |  |  |  |
| 17:05 | 17:20         | 8   | Oral. Study on Flow Characteristics of Atmospheric-Pressure Air Plasma Free Jet Based on Magnetohydrodynamics Xianpin Sun/Xi'an Jiaotong University, China        |  |  |  |



### Session 3-2

2025-10-11 13:30~17:30 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 2#, 3F

| Start | End                       | ID  | Title                                                                                                                                                                                            |  |  |  |
|-------|---------------------------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Takahiro Tsukahara |     |                                                                                                                                                                                                  |  |  |  |
| 13:30 | 14:00                     | 173 | Keynote speech Effects of flow blockage on convective flow through a vertical channel Chengwang Lei/School of Civil Engineering The University of Sydney, Australia                              |  |  |  |
|       |                           |     | Chair: Hong Liang/ Liang Gong                                                                                                                                                                    |  |  |  |
| 14:00 | 14:15                     | 19  | Oral. Flow and Heat Transfer in Single- and Multi-Hole Impinging Jets Studied Using a New Hybrid Very Large Eddy Simulation Gaoqian Lu/Nanjing University of Aeronautics and Astronautics, China |  |  |  |
| 14:15 | 14:30                     | 28  | Oral Investigation of Heat Transfer and Hydrodynamic Forces in Cylindrical Particle Arrays with Varied Distributions Under Poiseuille Flow  Qinghua Li/Zhejiang University, China                |  |  |  |
| 14:30 | 14:45                     | 41  | Oral. Design and multi-parameter optimization of a mesoscale channel cold plate with non-uniform fins for high heat flux cooling  Zhengdao Li/Xi'an Jiaotong University, China                   |  |  |  |
| 14:45 | 15:00                     | 49  | Oral. Pore scale study of gravity-driven non-isothermal fluid displacement in disordered porous media  Juanyong Wang/China University of Geosciences, China                                      |  |  |  |
| 15:00 | 15:15                     | 97  | Oral. Predicting Effective Thermal Conductivity in Carbon Fibrous Media: Stochastic Modeling and Multi-Physics Simulation Chenglin Zhou/Lanzhou University of Technology, China                  |  |  |  |
| 15:15 | 15:30                     | 142 | Oral. A Pseudo-transient continuation time-scale adaptive method within the Boussinesq buoyancy approximation Haipeng Cai/Xi'an Jiaotong University, China                                       |  |  |  |
| 15:30 | 16:00                     |     | Coffee Break                                                                                                                                                                                     |  |  |  |



| Start | End                         | ID  | Title                                                                                                                                                                                                                                                 |  |  |  |
|-------|-----------------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Shi Tao/ Weiwei Yang |     |                                                                                                                                                                                                                                                       |  |  |  |
| 16:00 | 16:15                       | 150 | Oral. Thermal Propagation Suppression in 5*5 Battery module Under Immersion Cooling Pengpai Liu/Huazhong University of Science and Technology, China                                                                                                  |  |  |  |
| 16:15 | 16:30                       | 89  | Oral. Numerical investigation on a liquid-cooling and free-cooling combined data center - a comprehensive case study Zixing Wang/Xi'an Jiaotong University, China                                                                                     |  |  |  |
| 16:30 | 16:45                       | 92  | Oral. Numerical simulation study on thermal stress distribution of three-dimensional porous calcium-based particle under high-throughput concentrated solar irradiation conditions  Yiming Zhao/Beijing Institute of Petrochemical Technology,  China |  |  |  |
| 16:45 | 17:00                       | 93  | Oral. Thermal Performance Analysis of a Liquid Cooling System with Bidirectional Parallel Flow Channel for Lithium-Ion Batteries  Rumeng Zhao/Beijing Institute of Petrochemical Technology, China                                                    |  |  |  |
| 17:00 | 17:15                       | 121 | Oral. A New Interpolation Scheme and Application in Iterative<br>Green-Gauss Gradient Reconstruction<br>Zhaoren Li/Xi'an Jiaotong University, China                                                                                                   |  |  |  |
| 17:15 | 17:30                       | 144 | Oral. Mesoscopic Insights into the Reactive Transport Processes in Catalyst layers of PEMFCs Yutong Mu/Xi'an Jiaotong University, China                                                                                                               |  |  |  |



### Session 3-3

2025-10-12 13:30~17:10 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 1#, 3F

| Start | End                 | ID  | Title                                                                                                                                                                                                                         |  |  |  |  |
|-------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | Chair: Xiafeng Zhou |     |                                                                                                                                                                                                                               |  |  |  |  |
| 13:30 | 13:50               | 16  | Invited speech Numerical simulation study on heat dissipation characteristics under laminar flow conditions in subsea data centers  Chaoling Han/Nanjing Tech University, China                                               |  |  |  |  |
| 13:50 | 14:05               | 131 | Oral. Analysis of manifold-driven cooling walls with non-<br>uniform flow and heat flux distribution  Kexin Meng/North China Electric Power University, China                                                                 |  |  |  |  |
| 14:05 | 14:20               | 5   | Oral. Research on the Physical Properties Parameters of<br>Lubricating Oil and Their Variation Rules under High<br>Temperature and High Pressure<br>Tianyi Yu/Naval University of Engineering, China                          |  |  |  |  |
| 14:20 | 14:35               | 6   | Oral. Effect of Fly Ash Recirculation Port and Secondary Air Optimization on the Flow Characteristics and Secondary Combustion of Fly Ash in Biomass Boilers  Yixue Zhang/Qingdao University of Science and Technology, China |  |  |  |  |
| 14:35 | 14:50               | 30  | Oral. Numerical Investigation and Parametric Optimization of Intermittent Spray Cooling Heat Transfer  Yifeng Liu/Xi'an Jiaotong University, China                                                                            |  |  |  |  |
| 14:50 | 15:05               | 58  | Oral. Further discussion on the stability and boundedness of convective discretization schemes: a four-node normalized variable analysis method  Xiangyou Feng/Xi'an Jiaotong University, China                               |  |  |  |  |
| 15:05 | 15:35               |     | Coffee Break                                                                                                                                                                                                                  |  |  |  |  |
|       |                     |     | Chair: Chaoling Han                                                                                                                                                                                                           |  |  |  |  |
| 15:35 | 15:55               | 157 | Invited speech Parallel discrete unified gas kinetic scheme based on compact method for particle transport models  Xiafeng Zhou/Huazhong University of Science and Technology, China                                          |  |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                                                                            |
|-------|-------|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:55 | 16:10 | 75  | Oral. Numerical study on the flow and combustion characteristics of black liquor via a computational fluid dynamic (CFD) approach modified by the user defined functions (UDFs)  Junwei Luo/Huazhong University of Science and Technology, China |
| 16:10 | 16:25 | 151 | Oral. Numerical study on performance optimization of two-<br>phase closed thermosyphon with vortex generator<br>Yuxuan Bo/University of Shanghai for Science and Technology,<br>China                                                            |
| 16:25 | 16:40 | 156 | Oral. An Investigation and Analysis of Thermal Attributes in Oil-Immersed Transformer windings Under Canonical Operating Conditions  Hongye Yan/Xi'an Jiaotong University, China                                                                 |
| 16:40 | 16:55 | 34  | Oral. Impact of Three-Dimensional Asperities with Varying Sizes on Brake Interface Temperature and Thermal Effects of Elasto-Plastic Deformation Pengfei Cui/Lanzhou Jiaotong University, China                                                  |
| 16:55 | 17:10 | 167 | Oral. Coarse-Grained Molecular Dynamics Study on the Evaporation of Droplet Containing Nanobubble  Yuhang Du/University of Science and Technology Beijing, China                                                                                 |



## S4 Computational multi-component and multiphase flows

Oct. 10 - 12, 2025

#### **S4-1** Session 4-1

2025-10-10 13:30~17:45 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 2#, 3F

| Start | End            | ID  | Title                                                                                                                                                                                                                                                    |  |  |  |
|-------|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Li Chen |     |                                                                                                                                                                                                                                                          |  |  |  |
| 13:30 | 14:00          | 94  | Keynote speech A diffuse-interface lattice Boltzmann method for multiphase reactive flows  Zhenhua Chai/Huazhong University of Science and Technology, China                                                                                             |  |  |  |
|       |                |     | Chair: Dongke Sun                                                                                                                                                                                                                                        |  |  |  |
| 14:00 | 14:20          | 193 | Invited speech On the effects of Kelvin-Helmholtz instability over non-smooth wall turbulent flows  Yusuke Kuwata/Osaka Metropolitan University, Japan                                                                                                   |  |  |  |
| 14:20 | 14:40          | 76  | Invited speech Settling behavior of sub-millimetric non-spherical atmospheric particles  Yong Wang/School of Mechanical Engineering, Southeast University, China                                                                                         |  |  |  |
| 14:40 | 14:55          | 99  | Oral. Pore-Scale Investigation of Transport Phenomena in Compressed Electrodes of Vanadium Redox Flow Batteries Kangjun Duan/Institute of Energy Technologies, IET-3: Theory and Computation of Energy Materials, Forschungszentrum Jülich GmbH, Germany |  |  |  |
| 14:55 | 15:10          | 125 | Oral. A thermodynamically consistent and conservative diffuse-interface model for surfactant-laden two-phase dynamics  Hong Liang/Hangzhou Dianzi University, China                                                                                      |  |  |  |
| 15:10 | 15:25          | 127 | Oral. Thermodynamic-kinetic coupling during the evaporation of binary solvents  Qiyun Tang/Southeast University, China                                                                                                                                   |  |  |  |
| 15:25 | 15:40          | 137 | Oral. A Multiphase-Multicomponent Lattice Boltzmann<br>Approach for Dendritic Frosting on Supercooled Surfaces<br>Chaoyang Zhang/Shanghai Jiao Tong University, China                                                                                    |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                                 |
|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:40 | 16:10 |     | Coffee Break                                                                                                                                                                                          |
|       |       |     | Chair: Yusuke Kuwata                                                                                                                                                                                  |
| 16:10 | 16:30 | 46  | Invited speech Modeling of dendritic growth and sedimentation in non-equilibrium solidification of alloys by using the lattice Boltzmann – phase field method  Dongke Sun/Southeast University, China |
| 16:30 | 16:45 | 194 | Oral. Fouling Heat Transfer of a Curved Oscillating Plate Yit Fatt Yap/Khalifa University, United Arab Emirates                                                                                       |
| 16:45 | 17:00 | 69  | Oral. Molecular-Level Understanding of the Enhanced<br>Stability of Single Bulk Nanobubbles<br>Dezhao Huang/Wuhan University, China                                                                   |
| 17:00 | 17:15 | 17  | Oral. Lift force prediction for inertial focusing of a finite-size particle in non-Newtonian fluids  Xinghui Wu/South China University of Technology, China                                           |
| 17:15 | 17:30 | 114 | Oral. Numerical Study on Liquid Reorientation Induced by Gravity Reduction Hyosang Yoon/Korea Advanced Institute of Science and Technology, South Korea                                               |
| 17:30 | 17:45 | 115 | Oral. A CLSVOF Method for Compressible Two-Phase Flow in Ultrasonic Fields  Jaesung Park/Sogang University, South Korea                                                                               |



## S4-2 Session 4-2

2025-10-12 08:00~11:45 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 1#, 3F

| Start | End               | ID  | Title                                                                                                                                                                                                                             |  |  |  |
|-------|-------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Shuai Gong |     |                                                                                                                                                                                                                                   |  |  |  |
| 08:00 | 08:20             | 61  | Invited speech Brownian coagulation in the spatial mixing layer with AK-iDNS  Mingliang Xie/Huazhong University of Science and Technology, China                                                                                  |  |  |  |
| 08:20 | 08:40             | 184 | Invited speech Mesoscopic modeling of liquid-vapor phase change phenomena: from single droplet to complex materials  Linlin Fei/Xi'an Jiaotong University, China                                                                  |  |  |  |
| 08:40 | 08:55             | 165 | Oral. A unified variational approach and mesoscopic lattice Boltzmann method for simulating non-isothermal two phase flows  Xuguang Yang/Hunan First Normal University, China                                                     |  |  |  |
| 08:55 | 09:10             | 161 | Oral. Improved extrapolation-based curved boundary schemes in pseudopotential multiple-relaxation-time lattice Boltzmann method for multiphase simulations Wenqiang Guo/China Aerodynamics Research and Development Center, China |  |  |  |
| 09:10 | 09:25             | 18  | Oral. A Mixture Porous Media Model Augmented by Full-Flow-Regime-Based Closure Models for Water Boiling in Parallel Rectangular Microchannels  Zicheng Tang/Xi'an Jiaotong University, China                                      |  |  |  |
| 09:25 | 09:40             | 32  | Oral. A Simple Flux-Limiting Method for Volume Fraction Transport on Unstructured Meshes with Arbitrary Velocity Fields Zihan Wang/Xi'an Jiaotong University, China                                                               |  |  |  |
| 09:40 | 10:10             |     | Coffee Break                                                                                                                                                                                                                      |  |  |  |
|       |                   |     | Chair: Mingliang Xie                                                                                                                                                                                                              |  |  |  |
| 10:10 | 10:30             | 185 | Invited speech Modeling Liquid-Vapor Phase Change Heat Transfer: From Nanoscale to Macroscale Shuai Gong/Shanghai Jiao Tong University, China                                                                                     |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                  |
|-------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:30 | 10:45 | 4   | Oral. Large-Eddy Simulation Based Comparative Study of Cavitation Dynamics in Fuel Injector Control Ball Valves Xingyu Qu/Naval University of Engineering, China       |
| 10:45 | 11:00 | 40  | Oral. Mixing Zone Prediction for Long-Distance Product Oil Pipeline via Sliding Mapping Technique Using the UDF for FLUENT  YuZhu Liu/Yangtze University, China        |
| 11:00 | 11:15 | 68  | Oral. A phase-field lattice Boltzmann model with tensorial mobility to suppress spontaneous shrinkage of droplets  Qipo Dong/Harbin Institute of Technology, China     |
| 11:15 | 11:30 | 155 | Oral Molecular Simulation Study on the Miscibility of Methanol-Refined Oil-Water Three-Phase System  Zhidong Gong/Beijing Institute of Petrochemical Technology, China |



# S5 Heat exchangers

Oct. 12 - 12, 2025

### SE Session 5

2025-10-12 08:00~11:20 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 2#, 3F

| Start | End              | ID           | Title                                                                                                                                                                                                                               |  |  |  |  |
|-------|------------------|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | Chair: Jingfa Li |              |                                                                                                                                                                                                                                     |  |  |  |  |
| 08:00 | 08:30            | 175          | Keynote speech Computational Analysis of Phase Change based Heat Sink coupled with Heat Pipe as Thermal Conductivity Enhancer  Jyotirmay Banerjee/Sardar Vallabhbhai National Institute of Technology (SVNIT), India                |  |  |  |  |
|       |                  |              | Chair: Zhi-Min Lin                                                                                                                                                                                                                  |  |  |  |  |
| 08:30 | 08:45            | 36           | Optimization of selective laser melting process parameters and experimental validation for hybrid minichannel heat exchangers based on deep neural networks and reinforcement learning  Dechao Liu/Xi'an Jiaotong University, China |  |  |  |  |
| 08:45 | 09:00            | 54           | Oral. A novel S-CO2 solar receiver based on triply periodic minimal surfaces: Thermal-hydraulic performance and structural feasibility  Shuangyun Li/Hebei University of Technology, China                                          |  |  |  |  |
| 09:00 | 09:15            | 48           | Oral Mechanism of Convective Heat Transfer Enhancement<br>by Vortex Generators in the Fin Side of Flat Tube bank fin<br>Heat Exchanger Viewed from the other View<br>He Jing/Lanzhou Jiaotong University, China                     |  |  |  |  |
| 09:15 | 09:30            | 108          | Oral. Topology optimization of turbulent convective heat transfer processes in regenerative cooling channel Sitong Li/Xi'an Jiaotong University, China                                                                              |  |  |  |  |
| 09:30 | 10:00            | Coffee Break |                                                                                                                                                                                                                                     |  |  |  |  |

| Start | End                   | ID  | Title                                                                                                                                                                                                                                                 |  |  |  |
|-------|-----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Chao-Zhong Qin |     |                                                                                                                                                                                                                                                       |  |  |  |
| 10:00 | 10:20                 | 20  | Invited speech Thermal-Hydraulic Performance Optimization of Louver-Finned Circular Tube Heat Exchangers with Rear-Punched Curved Delta-Winglet Generators Using Taguchi and Response Surface Methods  Zhi-Min Lin/Lanzhou Jiaotong University, China |  |  |  |
| 10:20 | 10:35                 | 123 | Oral. Three-Dimensional Spatiotemporal Evolution of Thermal Fields in Horizontal Submerged Thermal Jets Shufan Xiao/Huazhong University of Science and Technology, China                                                                              |  |  |  |
| 10:35 | 10:50                 | 12  | Oral. Numerical Study on Heat Transfer and Flow Characteristics of Nanofluids in Twisted Elliptical Tubes at Low Reynolds Numbers Haitao Luo/Lanzhou University of Technology, China                                                                  |  |  |  |
| 10:50 | 11:05                 | 38  | Oral. The Uncertainty Quantification of Thermal Conductivities for Braided Composites Based on Minimum-size Unit Cells Yueer Sun/Northwestern Polytechnical University, China                                                                         |  |  |  |
| 11:05 | 11:20                 | 139 | Oral. Genetic-AlgorithmBased Topology Optimization for Efficient Cooling of HVDC Equipment  Zongdao Piao/Changwon National University, South Korea                                                                                                    |  |  |  |

# S6 Numerical methods in multiscale and multi-physics modeling

Oct. 10 - 12, 2025

### Session 6-1

2025-10-10 13:30~17:05 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 3#, 3F

| Start | End                  | ID  | Title                                                                                                                                                                   |  |  |  |
|-------|----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Seungwon Shin |     |                                                                                                                                                                         |  |  |  |
|       |                      |     | Keynote speech Flame-wall interaction for gas turbine applications                                                                                                      |  |  |  |
| 13:30 | 14:00                | 172 | Donghyuk Shin/Korea Advanced Institute of Science and                                                                                                                   |  |  |  |
|       |                      |     | Technology Department of Aerospace Engineering, South Korea                                                                                                             |  |  |  |
|       |                      |     | Chair: Kun Xu                                                                                                                                                           |  |  |  |
|       |                      |     |                                                                                                                                                                         |  |  |  |
| 1100  | 4.00                 |     | Keynote speech On the Mechanism of heat transfer modulation by finite-size particles in Rayleigh-Bénard convection                                                      |  |  |  |
| 14:00 | 14:30                | 171 | Lianping Wang/Southern University of Science and Technology,                                                                                                            |  |  |  |
|       |                      |     | College of Engineering, China                                                                                                                                           |  |  |  |
|       |                      |     | Chair: Lianping Wang                                                                                                                                                    |  |  |  |
| 14:30 | 14:45                | 91  | Oral. Multi-scale numerical method assisted by machine learning to study reactive transport processes of redox flow battery                                             |  |  |  |
|       |                      |     | Qiang Ma/Jiangsu university, China                                                                                                                                      |  |  |  |
| 14:45 | 15:00                | 35  | Oral Electromagnetic Flow Control in Hypersonic Rarefied Environment  Zhigang Pu/Hong Kong University of Science and Technology, China                                  |  |  |  |
| 15:00 | 15:15                | 25  | Oral. Thermal-hydraulic-mechanical-chemical fully coupled modeling and simulation of hot dry rock reservoirs with embedded grids  Kaituo Jiao/Yangtze University, China |  |  |  |
| 15:15 | 15:30                | 140 | Oral. Immersed-boundary discrete unified gas kinetic scheme for multi-scale gas-solid flows with heat trasfer Shi Tao/Dongguan University of Technology, China          |  |  |  |



| Start | End                   | ID  | Title                                                                                                                                                                   |  |  |  |  |
|-------|-----------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| 15:30 | 16:00                 |     | Coffee Break                                                                                                                                                            |  |  |  |  |
|       | Chair: Dong-hyuk Shin |     |                                                                                                                                                                         |  |  |  |  |
| 16:00 | 16:20                 | 195 | Invited speech Thermo-electro-hydrodynamic Convection in a Finite Cylindrical Annulus Changwoo Kang/Jeonbuk National University, Korea                                  |  |  |  |  |
| 16:20 | 16:35                 | 117 | Oral. A hybrid approach of Molecular Dynamics and S-Model<br>Boltzmann Kinetic Equation simulation for evaporation<br>modeling<br>Adnan Khan/Tsinghua University, China |  |  |  |  |
| 16:35 | 16:50                 | 63  | Oral. A discrete unified gas kinetic scheme with Monte Carlo sampling applied in velocity space Shuyang Zhang/Huazhong University of Science and Technology, China      |  |  |  |  |
| 16:50 | 17:05                 | 29  | Oral Electro-Thermal Coupling Modeling for Accurate Junction Temperature Prediction in GaN HEMTs Ye Song/Xi'an Jiaotong University, China                               |  |  |  |  |

### S6-2 Session 6-2

2025-10-12 13:30~16:55 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 2#, 3F

| Start | End                 | ID  | Title                                                                                                                                                                                                 |  |  |  |  |
|-------|---------------------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|       | Chair: Xuguang Yang |     |                                                                                                                                                                                                       |  |  |  |  |
| 13:30 | 13:50               | 164 | Invited speech Mesoscale modelling of dense emulsion flows: From short range repulsion to bulk rheology Haihu Liu/Xi'an Jiaotong University, China                                                    |  |  |  |  |
| 13:50 | 14:05               | 2   | Oral. Performance evaluation of flux-reconstruction schemes in the discrete unified gas-kinetic scheme for low-speed continuum flows  Ziyang Xin/Huazhong University of Science and Technology, China |  |  |  |  |
| 14:05 | 14:20               | 7   | Oral. Resolving Spatiotemporal Thermal Dynamics in LiBs: A Coupled Electrochemical-Thermal Model with Python Implementation Xiaorong Zhao/Xi'an Jiaotong University, China                            |  |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                        |
|-------|-------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:20 | 14:35 | 107 | Oral. Multi-scale modeling of PEMFC and performance optimization using STEM tomography and machine learning Yikun Wang/Xi'an Jiaotong University, China                                      |
| 14:35 | 14:50 | 110 | Oral. Structural Optimization of the Ordered Catalyst Layer Based on a 1+1D PEMFC Model Guangji Sun/Xi'an Jiaotong University, China                                                         |
| 14:50 | 15:05 | 65  | Oral. An improved discrete unified gas kinetic scheme of kinetic equation forstrongly inhomogeneous fluids Huipeng Liu/Huazhong University of Science and Technology, China                  |
| 15:05 | 15:35 |     | Coffee Break                                                                                                                                                                                 |
|       |       |     | Chair: Haihu Liu                                                                                                                                                                             |
| 15:35 | 15:55 | 196 | Invited speech Discrete unified gas kinetic scheme for flows of binary gas mixtures  Yue Zhang/Wuhan Institute of Technology, China                                                          |
| 15:55 | 16:10 | 78  | Oral. Full-scale three-dimensional multi-physics simulation of proton exchange membrane electrolysis stack Binxin Qiao/Xi'an Jiaotong University, China                                      |
| 16:10 | 16:25 | 209 | Oral. Butterfly flapping flow simulation based on the GPU accelerated lattice Boltzmann method Ruizhen Huang/Harbin Engineering University, China                                            |
| 16:25 | 16:40 | 98  | Oral. A diffuse-interface model for reactive transport involving solid dissolution and precipitation  Xi Liu/Huazhong University of Science and Technology, China                            |
| 16:40 | 16:55 | 3   | Oral. Numerical investigation on premixed NH3/H2/air flame stability of a microscale Swiss-roll combustor with a bluff-body  Wanhao Liu/Huazhong University of Science and Technology, China |



## 57 Heat and mass transfer in porous media

Oct. 11 - 11, 2025

#### Session 7

2025-10-11 13:30~18:15 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 3#, 3F

| Start | End                       | ID  | Title                                                                                                                                                                                              |  |  |  |
|-------|---------------------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Jyotirmay Banerjee |     |                                                                                                                                                                                                    |  |  |  |
| 13:30 | 14:00                     | 206 | Keynote speech Study on the Mechanism of Leakage, Ignition, and Explosion in High-Pressure Hydrogen-Blended Natural Gas Pipelines  Jingfa Li/Yangtze University, China                             |  |  |  |
|       |                           |     | Chair: Chunyang Wang                                                                                                                                                                               |  |  |  |
| 14:00 | 14:20                     | 130 | Invited speech Modeling of Flow and Transport in Multiscale Digital Rocks Chao-Zhong Qin/Chongqing University, China                                                                               |  |  |  |
| 14:20 | 14:40                     | 197 | Invited speech High-fidelity modeling of liquid film boiling on micro-structured surfaces  Xiuliang Liu/Huazhong University of Science and Technology, China                                       |  |  |  |
| 14:40 | 14:55                     | 210 | Oral. Heat transfer in a PCM-based finned heat sink enhanced with metal foam  Nadezhda Bondareva/Tomsk State University, Russian Federation                                                        |  |  |  |
| 14:55 | 15:10                     | 126 | Oral. Effects of Suspended Particles on Multiphase Displacement in Porous Media Using a Diffuse-Interface Lattice Boltzmann Method Changsheng Huang/China University of Geosciences (Wuhan), China |  |  |  |
| 15:10 | 15:25                     | 141 | Oral How local gas-solid interactions affect thermal conduction in silica nanoparticle materials  Mingyang Yang/Xi'an University of Architecture and Technology, China                             |  |  |  |
| 15:25 | 15:40                     | 149 | Oral. Study of transport properties of the PEMFC porous electrode based on compressed microstructure Zhuo Zhang/Xi'an Jiaotong University, China                                                   |  |  |  |

| Start | End   | ID  | Title                                                                                                                                                 |
|-------|-------|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------|
| 15:40 | 15:55 | 215 | Oral. A Numerical Investigation into the Influence of Porous<br>Media Geometry on Transpiration Cooling Across Varying<br>Blowing Ratios              |
|       |       |     | Jisu Park/Jeonbuk National University, Republic of Korea                                                                                              |
| 15:55 | 16:10 | 216 | Oral. The Effect of Manifold Inclination on Cooling<br>Performance of U-type Air-cooled Battery Pack                                                  |
|       |       |     | Jeonghun Ko/Jeonbuk National University, Republic of Korea                                                                                            |
|       |       |     | Chair: Chaoyang Zhang                                                                                                                                 |
| 16:10 | 16:30 | 198 | Invited speech Applicability of the volume average method for heat transfer in porous structure                                                       |
|       |       |     | Chunyang Wang/Institute of Engineering Thermophysics, Chinese Academy of Sciences, China                                                              |
| 16:30 | 16:45 | 100 | Oral Numerical simulation of transpiration cooling based on porous media reconstruction                                                               |
|       |       |     | Minghang Tan/Xi'an Jiaotong University, China                                                                                                         |
| 16:45 | 17:00 | 119 | Oral. Two-way coupled acceleration method for local thermal non-equilibrium model of convective heat transfer in porous media                         |
|       |       |     | Qi Guo/Xi'an Jiaotong University, China                                                                                                               |
| 17:00 | 17:15 | 133 | Oral Atomic-level prediction of Palladium-Based Alloy<br>Membranes for Hydrogen Separation from Hydrogen-<br>Blended Natural Gas                      |
|       |       |     | Ziming Hu/Yangtze University, China                                                                                                                   |
| 17:15 | 17:30 | 9   | Oral. A method for measuring the elastic modulus of aerogels based on thermal conductivity test                                                       |
|       |       |     | Cheng Bi/Xi'an Special Equipment Inspection Institute, China                                                                                          |
| 17:30 | 17:45 | 23  | Oral. Analysis of the Influence of Air Chamber End Socket<br>Eccentricity on Flow Distribution and Multiphysics Field<br>Distribution in PEMFC Stacks |
|       |       |     | Hong-Bing Quan/Xi'an Jiaotong University, China                                                                                                       |
| 17:45 | 18:00 | 53  | Oral. Effects of mechanical Stress and Film Thickness on Oxygen Transport Resistance in PEMFCs                                                        |
|       |       |     | Kai-Bo An/Xi'an Jiaotong University, China                                                                                                            |



| Start | End   | ID | Title                                                                         |
|-------|-------|----|-------------------------------------------------------------------------------|
| 10.00 | 18:15 | 66 | Oral. Characteristic Thickness of Thin-Film Region for Micropillar Evaporator |
| 18:00 |       |    | Bingyue Zhang/Huazhong University of Science and                              |
|       |       |    | Technology, China                                                             |



# S8 AI, surrogate modeling and optimization

Oct. 12, 2025

### S8-1 Session 8-1

2025-10-12 08:00~11:50 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 3#, 3F

| 2023 10 |                     |     | o wunan Opties valley kingdom Piaza kingdom Baliroom 3#, 3F                                                                                                                                                     |  |  |  |
|---------|---------------------|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Start   | End                 | ID  | Title                                                                                                                                                                                                           |  |  |  |
|         | Chair: Sanghun Choi |     |                                                                                                                                                                                                                 |  |  |  |
| 08:00   | 08:30               | 207 | Keynote speech Topology optimization of heat and mass transfer processes: models and applications Li Chen/Xi' an Jiaotong University, China                                                                     |  |  |  |
|         |                     |     | Chair: Satoshi li                                                                                                                                                                                               |  |  |  |
| 08:30   | 08:50               | 60  | Invited speech Computational Design of Aerogel Windows: From Microstructure to Performance  Du Mu/Shandong University, China                                                                                    |  |  |  |
| 08:50   | 09:05               | 211 | Oral. Urban Microclimate Simulation for UAM Operation Safety Assessment Using LES Data-Driven POD- Transformer Modeling Kim Jungwoo/Yonsei University, South Korea                                              |  |  |  |
| 09:05   | 09:20               | 118 | Oral. Image recognition-based ultra-fast and accurate equivalent circuit model for metal hydride reactors Wangxin Yang/Xi'an Jiaotong University, China                                                         |  |  |  |
| 09:20   | 09:35               | 10  | Oral. High efficiency design and optimization framework of TPMS structures for additive manufacturing applications Hanyu Ning/Xi'an Jiaotong University, China                                                  |  |  |  |
| 09:35   | 09:50               | 52  | Oral. Active-Passive Synergistic Optimization of Building Cooling on Low-Latitude Islands Based on Deep Seawater Closed Cooling Air Conditioning System Huimin Niu/North China Electric Power University, China |  |  |  |
| 09:50   | 10:10               |     | Coffee Break                                                                                                                                                                                                    |  |  |  |
|         |                     |     | Chair: Du Mu                                                                                                                                                                                                    |  |  |  |
| 10:10   | 10:30               | 199 | Invited speech Water and Thermal Management in Proton Exchange MembraneFuel Cells: Insights across Different Scales and Al-Driven Operating Condition Optimization Lei Chen/Xi'an Jiaotong University, China    |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                                                  |
|-------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:30 | 10:50 | 200 | Invited speech Multi-objective intelligent optimization of waste heat removal process for space nuclear reactors  Haochun Zhang/Harbin Institute of Technology, China                                                  |
| 10:50 | 11:05 | 103 | Oral On-board Hydrogen Cylinder Filling Strategy Based on Stepwise Filling Mode  Daoting Wang/Beijing Institute of Petrochemical Technology, China                                                                     |
| 11:05 | 11:20 | 163 | Oral. Numerical study and performance evaluation of a SWaP-refined miniature Stirling cryocooler for high-operating-temperature infrared detectors  Muhammad Shad/Huazhong University of Science and Technology, China |
| 11:20 | 11:35 | 104 | Oral. Performance of topology-optimized liquid flow channel for battery thermal management: preheating and cooling  Tianshuo Yang/Dalian Maritime University, China                                                    |
| 11:35 | 11:50 | 113 | Oral. A Fast Prediction Method for Multi-Physical Fields of<br>Chip Heat Exchangers Based on CFD and Convolutional<br>Neural Network<br>Hang Yu/Xi'an Jiaotong University, China                                       |

## S8-2 Session 8-2

2025-10-12 13:30~16:35 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 3#, 3F

| Start | End               | ID  | Title                                                                                                                           |  |  |  |
|-------|-------------------|-----|---------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       |                   |     | Chair: Guang Feng                                                                                                               |  |  |  |
| 13:30 | 14:00             | 177 | Keynote speech Physics-Informed Flow Simulations via Operator Learnings Sanghun Choi/Kyungpook National University, South Korea |  |  |  |
|       | Chair: Xuhui Meng |     |                                                                                                                                 |  |  |  |
| 14:00 | 14:15             | 15  | Oral. Solving Partial Differential Equations Based on Unstructured Neural Operators Haobo Guo/Xi'an Jiaotong University, China  |  |  |  |



| End   | ID                                        | Title                                                                                                                                                                                                 |
|-------|-------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14:30 | 159                                       | Oral. Monte Carlo physics-informed neural networks for<br>multiscale heat conduction via phonon Boltzmann transport<br>equation<br>Qingyi Lin/Huazhong University of Science and Technology,<br>China |
| 14:45 | 138                                       | Oral. Generalizable subgrid scale stress modeling using graph neural networks with multi-scale physics Louis Hutin/Institute of Science Tokyo, China                                                  |
| 15:00 | 212                                       | Oral. Reinforcement Learning-based Precision Temperature Control for Thermoelectric Heat Exchangers SeokYong Lee/Kyungpook National University, South Korea                                           |
| 15:30 |                                           | Coffee Break                                                                                                                                                                                          |
|       |                                           | Chair: Lei Chen                                                                                                                                                                                       |
| 15:50 | 201                                       | Invited speech Prediction of patient-specific hemodynamics for cerebral aneurysms using computational fluid dynamics and deep learning techniques  Satoshi li/Institute of Science Tokyo, Japan       |
| 16:05 | 102                                       | Oral. Optimization of Key Transport Parameters of Temporary Plugging Agents in Deep Reservoirs Using TCN and NSGA-II Yue Wu/China University of Petroleum, China                                      |
| 16:20 | 112                                       | Oral. Adaptive Flow Control Strategy for Power Lithium-Ion Batteries Based on LSTM-Encoder Tianyi Zhang/Xi'an Jiaotong University, China                                                              |
| 16:35 | 122                                       | Oral. An Interpretable Deep Learning model for Quantifying Catalyst Layer Structural and Operating Condition Impacts on Performance in PEM Fuel Cells  Zhao Liu/Xi'an Jiaotong University, China      |
|       | 14:30<br>14:45<br>15:00<br>15:30<br>16:05 | 14:30       159         14:45       138         15:30       212         15:30       201         16:05       102         16:20       112                                                               |



# S9 Turbulence

Oct. 11 - 11, 2025

#### Session 9

2025-10-11 08:00~11:00 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 2#, 3F

| Start | End                  | ID  | Title                                                                                                                                                                                    |  |  |  |
|-------|----------------------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Hiroya Mamori |     |                                                                                                                                                                                          |  |  |  |
| 08:00 | 08:20                | 124 | Invited speech Quantum turbulence coupled with normal fluid turbulence in superfluid helium-4 Hiromichi Kobayashi/Keio University, Japan                                                 |  |  |  |
| 08:20 | 08:40                | 202 | Invited speech Numerical and experimental study of transient heat transfer in fully turbulent pulsating flows  Yutaka Oda/Kansai University, Japan                                       |  |  |  |
| 08:40 | 08:55                | 106 | Oral Large-Scale Control using Buoyancy Force for Skin-<br>Friction Drag Reduction in Turbulent Vertical Channel Flow<br>Menglei Wang/The University of Electro Communications,<br>Japan |  |  |  |
| 08:55 | 09:10                | 145 | Oral. DNS Investigation of Wall Heat Flux in Reacting Turbulent Channel Flow: Effects of Flame-wall Interaction and Near-wall Flame Quenching Ye Wang/Institute of Science Tokyo, Japan  |  |  |  |
| 09:10 | 09:25                | 213 | Oral. Skin-friction drag reduction effect of turbulent channel flow by periodically varying wall temperature  Satsuki Aoyama/The University of Electro-Communications,  Japan            |  |  |  |
| 09:25 | 09:55                |     | Coffee Break                                                                                                                                                                             |  |  |  |
|       |                      |     | Chair: Hiromichi Kobayashi                                                                                                                                                               |  |  |  |
| 09:55 | 10:15                | 203 | Invited speech Towards practical prediction and control of wall-bounded turbulence Hiroya Mamori/The University of Electro-Communications, Japan                                         |  |  |  |
| 10:15 | 10:30                | 72  | Oral. Energy budget analysis on porous coating effects on unstable perturbations in high speed boundary layers Peicheng Sun/Northwestern Polytechnical University, China                 |  |  |  |



| Start | End   | ID  | Title                                                                                                                                       |
|-------|-------|-----|---------------------------------------------------------------------------------------------------------------------------------------------|
| 10:30 | 10:45 | 73  | Oral. Evaluation and Prediction of Flow and Heat Transfer of<br>Supercritical Water in a Vertical Loop Using Different<br>Turbulence Models |
|       |       |     | Quanyu Gong/Institute of Engineering Thermophysics, Chinese<br>Academy of Sciences, China                                                   |
| 10:45 | 11:00 | 128 | Oral. Study on Turbulence/Transition and Heat Transfer<br>Characte-ristics using Lattice Boltzmann Method on Multi-<br>GPU Platforms        |
|       |       |     | Xing Xiang/Institute of Process Engineering, Chinese Academy of Sciences, China                                                             |



# S10 Fuel cells and other application

Oct. 11 - 11, 2025

### S10 Session 10

2025-10-11 08:00~11:55 Wuhan Opties Valley Kingdom Plaza Kingdom Ballroom 3#, 3F

| Start | End            | ID  | Title                                                                                                                                                                                                    |  |  |  |
|-------|----------------|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|       | Chair: Meng Ni |     |                                                                                                                                                                                                          |  |  |  |
| 08:00 | 08:30          | 176 | Keynote speech A study on energy consumption and energy savings potentialof cooling solutions for commercial buildings in Viet Nam  Quoc Dung Trinh/Hanoi University of Science and Technology, Viet Nam |  |  |  |
|       |                |     | Chair: Quoc Dung Trinh                                                                                                                                                                                   |  |  |  |
| 08:30 | 09:00          | 208 | Keynote speech Micropillar-patterned electrodes to enhance mass transfer in low Pt-loaded fuel cells                                                                                                     |  |  |  |
|       |                |     | Meng Ni/The Hong Kong Polytechnic University, China                                                                                                                                                      |  |  |  |
|       |                |     | Chair: Yujie Chen                                                                                                                                                                                        |  |  |  |
| 09:00 | 09:20          | 204 | Invited speech A fully self-developed multiphysics-integrated computational framework for 3D proton exchange membrane fuel cell modeling  Fan Bai/Xi'an Jiaotong University, China                       |  |  |  |
| 09:20 | 09:40          | 205 | Invited speech Insights into the oxygen transport through thin films on platinum surfaces  Wenzhen Fang/Xi'an Jiaotong University, China                                                                 |  |  |  |
| 09:40 | 09:55          | 111 | Oral. Multi-parameter optimization of PEMFCs with gradient porosity metal foam rib flow fields Shuangyu Lv/Xi'an Jiaotong University, China                                                              |  |  |  |
| 09:55 | 10:15          |     | Coffee Break                                                                                                                                                                                             |  |  |  |
|       |                |     | Chair: Fan Bai/ Qixing Wu                                                                                                                                                                                |  |  |  |
| 10:15 | 10:35          | 79  | Invited speech A three-dimensional curve interface reconstruction algorithm for the two-phase flow Yujie Chen/Beijing Institute of Petrochemical Technology, China                                       |  |  |  |



| Start | End   | ID  | Title                                                                                                                                                                                                      |
|-------|-------|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10:35 | 10:55 | 70  | Invited speech In-operando probing and simulating pore-level reactive transport in flow battery electrodes  Qixing Wu/Shenzhen University, China                                                           |
| 10:55 | 11:10 | 116 | Oral. Influence of capillary resistance within GDL on water transport behavior and cell performance  Xutao Liu/Xi'an Jiaotong University, China                                                            |
| 11:10 | 11:25 | 56  | Oral. Reconstruction of gas diffusion layer of proton exchange membrane fuel cell based on PTFE uneven distribution: structure and mass transfer performance  Shuchang Li/Xi'an Jiaotong University, China |
| 11:25 | 11:40 | 77  | Oral. Numerical research and optimization of titanium metal bipolar plate air-cooled fuel cell  Ke Xue/Xi'an Jiaotong University, China                                                                    |
| 11:40 | 11:55 | 148 | Oral. Investigation on a Temperature Control Strategy for Air-cooled Proton Exchange Membrane Fuel Cells Based on NSGAIII Multi-Objective Optimized RBF-PID  Xinyu Xue/Xi'an Jiaotong University, China    |



# PO Poster Presentation

Oct. 10 - 11, 2025

## PO1 Poster Presentation 1

2025-10-10 13:30~17:00 Wuhan Opties Valley Kingdom Plaza The Public Area, 3F

| ID  | Title                                                                                                                                                                                                     |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 166 | Poster Presentation Study on Application and Efficiency of Geothermal-Solar Coupled Heating System in Oil Pipelines                                                                                       |
|     | Daizong Shi/Beijing Institute of Petrochemical Technology, China                                                                                                                                          |
| 43  | Poster Presentation Energy-Saving Analysis of Water-Jacket Heating Furnace Based on Burner Modification Mei Lu/Yangtze University, China                                                                  |
| 47  | Poster Presentation Krylov 子空间方法在子通道程序 comeSC 中的加速应用研究 Yanming Xu/Huazhong University of Science and Technology, China                                                                                    |
| 80  | Poster Presentation Simulation and Characterization of the Drying Process in Lithium-Ion Battery Electrodes Based on Pore Network Modeling Bing Dong/Beijing Institute of Petrochemical Technology, China |
| 57  | Poster Presentation Numerical investigation on the temperature drop process of a buried waxy crude oil pipeline during shutdown period  Qing Yuan/Yangtze University, China                               |
| 62  | Poster Presentation A Computational Framework for Chemo-Specific Degradation of Radiative Coolers under Environmental Fouling Lin Guo/Shandong University, China                                          |
| 64  | Poster Presentation Dynamic Spectral Modulation of Silica Hydrogel Windows via Dry/Wet Transition for Energy-Efficient Buildings  Dong Niu/Dalian Maritime University, China                              |
| 81  | Poster Presentation CFD Investigation of Room-Scale Aerodynamics on the Cooling Performance of an Emergency Diesel Generator Heat Exchanger YuRong Li/NPRI, China                                         |
| 146 | Poster Presentation Design and Optimization of Dual-Temperature Collaborative Architecture for Multi-Mode Aircraft Thermal Management System  Shengnan Ji/Harbin Institute of Technology, China           |



| ID  | Title                                                                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 147 | Poster Presentation Investigation of Saturated Flow Boiling Heat Transfer in Minichannel Based on the SCIR Algorithm                                                                                   |
|     | Junhua Gong/Beijing Institute of Petrochemical Technology, China                                                                                                                                       |
| 152 | Poster Presentation Characteristics of supersonic condensation flow of moist air within the port channel of a pressure reduction valve  Fan Yuhao/Huazhong University of Science and Technology, China |
| 82  | Poster Presentation High-Precision Parameter Identification for Hydrogen Fuel Cell Voltage Models Using a Backpropagation Neural Network Chenzi Zhang/Xi'an Jiaotong University, China                 |

## PO2 Poster Presentation 2

2025-10-11 13:30~17:00 Wuhan Opties Valley Kingdom Plaza The Public Area, 3F

| ID  | Title                                                                                                                                                                                                                 |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 154 | Poster Presentation Numerical simulation study on structural Optimization from 5-24.5K international comparison device to 2-5K reference level temperature measurement device  Qi Wang/Northeastern University, China |
| 83  | Poster Presentation Numerical simulation of pool boiling heat transfer on micro-<br>structured surfaces  Xiaolong Bi/Xi'an Jiaotong University, China                                                                 |
| 86  | Poster Presentation Natural Convection Heat Transfer of Al2O3-Cu/Water Hybrid Nanofluids in a Cubic Enclosure with Double Heat Sources at the Bottom  Yu-Meng Wang/Lanzhou University of Technology, China            |
| 87  | Poster Presentation Nonlinear electroosmosis of polyelectrolyte solution in confined nanochannels  Xinxi Liu/Xi'an Jiaotong University, China                                                                         |
| 88  | Poster Presentation Enhancing the immersion cooling efficacy of Li-ion battery module by tailoring the coolant flow path Huaqiang Liu/Dalian Maritime University, China                                               |
| 219 | Poster Presentation Effect of Fly Ash Recirculation Port and Secondary Air Optimization on the Flow Characteristics and Secondary Combustion of Fly Ash in Biomass Boilers                                            |
|     | Yixue Zhang/Qingdao University of Science and Technology, China                                                                                                                                                       |



| ID  | Title                                                                                                                                                                                  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 14  | Poster Presentation Self-Adaptive VO2 Radiative Cooling Multilayer Structure with Different Band Selective Emissivity for Electronic Cooling Xin Zhao/Xi'an Jiaotong University, China |
| 217 | Poster Presentation Immersed Boundary Projection Method for Fluid-Structure Interaction Problems  Yuchen Zhang/Yonsei University, South Korea                                          |
| 218 | Poster Presentation Non-intrusive reduced-order modeling of space-time-dependent parameterized problems  Xiaomin Wang/Yonsei University, South Korea                                   |

#### **About the Traffic**

- From Wuhan Tianhe Airport to Optics Valley Kingdom Plaza Hotel Wuhan (武汉天河机场 → 武汉光谷金盾酒店)
  - ✓ By Metro: Take Metro (Line 2, towards Fozuling Station direction) from Tianhe
    Airport, transfer to Bus 702 (towards Luoyu East Road Youloukou Bus Station
    direction) at Guangbutun Station, and get off at Luoyu Road Wujiawan Bus
    Station. Walk 260 meters to the hotel.
    - 武汉天河机场乘坐地铁2号线(往佛祖岭站方向),在广埠屯站下车,换乘702号公交(往珞喻东路油篓口方向),在珞喻路吴家湾站下车,步行260米到武汉光谷金盾酒店。
  - ✓ By Taxi: approximately 49 kilometers, takes about 60 minutes and costs around
    150 RMB.

全程约49公里,乘车约60分钟,费用约150元。

- From Wuhan Railway Station to Optics Valley Kingdom Plaza Hotel Wuhan (武汉火车站 → 武汉光谷金盾酒店)
  - ✓ By Metro: Take Metro (Line 19, towards Xinyuexi Park Station direction) from Wuhan Railway Station, transfer to Line 11 (towards Jianganlu Station direction) at Guanggu 5th Road Station, and get off at Wuhan Sports University Station. Walk 1000 meters to the hotel.
    - 武汉站西广场站乘坐地铁19号线(往新月溪公园站方向),在光谷五路站下车,站内换乘11号线(往江安路方向),在武汉体育学院站下车,步行1000米到武汉 光谷金盾酒店。
  - ✓ By Taxi: approximately 19 kilometers, takes about 27 minutes and costs around
    40 RMB.
    - 全程约19公里,乘车约27分钟,费用约40元。



# ● From Hankou Railway Station to Optics Valley Kingdom Plaza Hotel Wuhan (汉口火车站 → 武汉光谷金盾酒店)

✓ By Metro: Take Metro (Line 2, towards Fozuling Station direction) from Hankou Railway Station, transfer to Bus 702 (towards Luoyu East Road Youloukou Bus Station direction) at Guangbutun Station, and get off at Luoyu Road Wujiawan Bus Station. Walk 260 meters to the hotel.

汉口火车站乘坐地铁2号线(往佛祖岭站方向),在广埠屯站下车,换乘702号公交(往珞喻东路油篓口方向),在珞喻路吴家湾站下车,步行260米到武汉光谷金盾酒店。

✓ By Taxi: approximately 21 kilometers, takes about 45 minutes and costs around
35 RMB.

全程约21公里,乘车约45分钟,费用约35元。

# ● From Wuchang Railway Station to Optics Valley Kingdom Plaza Hotel Wuhan (武昌火车站 → 武汉光谷金盾酒店)

✓ By Metro: Take Metro (Line 11, towards Gediannanzhan Station direction) from Wuchang Railway Station, and get off at Wuhan Sports University Station. Walk 1000 meters to the hotel.

武昌火车站乘坐地铁11号线(葛店南站方向),在武汉体育学院站下车,步行1000米到武汉光谷金盾酒店。

✓ By Taxi: approximately 7.7 kilometers, takes about 19 minutes and costs around 15 RMB.

全程约7.7公里,乘车约19分钟,费用约15元。



# 国家超算互联网

算力多元 资源领先 生态丰富 开箱即用 为科学计算、工业仿真、智能计算提供创新引擎

超算互联网连接产业生态中的算力供给、应用开发、运营服务、用户等各方能力和 资源,并以互联网的思维运营超算中心,构建一体化的超算算力网络和服务平台。





助力科技强国 让计算更简单

# 高质量 高性能 高性价比

# 并行超算云



#### 产品介绍

并行超算云是并行科技基于算力网络服务模式与云计算技术,结合自身在高性能计算领域多年研发经验推出的一站式超算 服务平台。

面向非自建数据中心或自身计算资源不足、租用系统、软件、服务的用户,提供弹性 按需增值的机时服务,保障用户科研任务及时获取所需的算力资源,具有高质量、高 性能、高性价比的服务优势。



#### 功能特色

#### 海量算力资源,随时调用

- ·汇聚超过70万核计算资源,合作接入数十家算力中心
- ·算力资源包括CPU、GPU以及各类国产加速卡
- ·可满足多种计算场景下的各类行业应用运行需求

#### 极速开通,提升效率

开通快:流程极简,资源开通快

传输快:专线网络,数据传输快

计算快:最佳资源匹配,计算快



#### 操作便捷,易上手

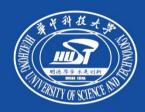
- 零门槛:平台易上手、不改变原使用习惯
- 高效:囊括图形化应用集成、数据管理、作业提交查看、 远程可视化前后处理等工作流

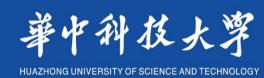


#### 专业技术服务

- 十余年行业经验,专家团队7×24小时在 线技术服务
- 基于应用运营特征分析的算力选型,持续 降低计算成本




#### 并行超算云·机时免费试算活动


并行超算云诚邀您参加"并行超算云·机时"免费试算活动,申请通过审核后, 即可获得并行超算云试算账号与5000核时进行试算,并享有并行科技7×24小时在线服务。





并行科技服务热线 400-092-0593



